Package: DMwR2 0.0.2

Luis Torgo

DMwR2: Functions and Data for the Second Edition of "Data Mining with R"

Functions and data accompanying the second edition of the book "Data Mining with R, learning with case studies" by Luis Torgo, published by CRC Press.

Authors:Luis Torgo [aut, cre]

DMwR2_0.0.2.tar.gz
DMwR2_0.0.2.zip(r-4.5)DMwR2_0.0.2.zip(r-4.4)DMwR2_0.0.2.zip(r-4.3)
DMwR2_0.0.2.tgz(r-4.4-any)DMwR2_0.0.2.tgz(r-4.3-any)
DMwR2_0.0.2.tar.gz(r-4.5-noble)DMwR2_0.0.2.tar.gz(r-4.4-noble)
DMwR2_0.0.2.tgz(r-4.4-emscripten)DMwR2_0.0.2.tgz(r-4.3-emscripten)
DMwR2.pdf |DMwR2.html
DMwR2/json (API)

# Install 'DMwR2' in R:
install.packages('DMwR2', repos = c('https://ltorgo.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/ltorgo/dmwr2/issues

Datasets:
  • GSPC - A set of daily quotes for SP500
  • algae - Training data for predicting algae blooms
  • algae.sols - The solutions for the test data set for predicting algae blooms
  • sales - A data set with sale transaction reports
  • sp500 - A set of daily quotes for SP500 in CSV Format
  • test.algae - Testing data for predicting algae blooms

On CRAN:

7.56 score 27 stars 2 packages 338 scripts 6.7k downloads 2 mentions 25 exports 38 dependencies

Last updated 8 years agofrom:c19cb08742. Checks:OK: 1 WARNING: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 19 2024
R-4.5-winWARNINGNov 19 2024
R-4.5-linuxWARNINGNov 19 2024
R-4.4-winWARNINGNov 19 2024
R-4.4-macWARNINGNov 19 2024
R-4.3-winWARNINGNov 19 2024
R-4.3-macWARNINGNov 19 2024

Exports:.Eq.StcentralImputationcentralValuecreateEmbedDSkNNknnImputationlofactormanyNAsnrLinesFileoutliers.rankingplotrpartXsert.prunesampleCSVsampleDBMSSelfTrainshowsigs.PRSoftMaxsummarytradeRecordtrading.signalstrading.simulatortradingEvaluation

Dependencies:bitbit64classclicliprcpp11crayoncurlDBIdplyrfansigenericsgluehmsjsonlitelatticelifecyclemagrittrMASSpillarpkgconfigprettyunitsprogressquantmodR6readrrlangrparttibbletidyselectTTRtzdbutf8vctrsvroomwithrxtszoo

Readme and manuals

Help Manual

Help pageTopics
Functions and data for the second edition of the book "Data Mining with R"DMwR2-package DMwR2
Training data for predicting algae bloomsalgae
The solutions for the test data set for predicting algae bloomsalgae.sols
Fill in NA values with central statisticscentralImputation
Obtain statistic of centralitycentralValue
Creates an embeded data set from an univariate time seriescreateEmbedDS
An auxiliary function of 'lofactor()'dist.to.knn
A set of daily quotes for SP500GSPC
k-Nearest Neighbour ClassificationkNN
An auxiliary function of 'lofactor()'knneigh.vect
Fill in NA values with the values of the nearest neighboursknnImputation
An implementation of the LOF algorithmlofactor
Find rows with too many NA valuesmanyNAs
Counts the number of lines of a filenrLinesFile
Obtain outlier rankingsoutliers.ranking
An auxiliary function of 'lofactor()'reachability
Obtain a tree-based modelrpartXse
Prune a tree-based model using the SE rulert.prune
A data set with sale transaction reportssales
Drawing a random sample of lines from a CSV filesampleCSV
Drawing a random sample of records of a table stored in a DBMSsampleDBMS
Self train a model on semi-supervised dataSelfTrain
Precision and recall of a set of predicted trading signalssigs.PR
Normalize a set of continuous values using SoftMaxSoftMax
A set of daily quotes for SP500 in CSV Formatsp500
Testing data for predicting algae bloomstest.algae
Class "tradeRecord"plot,tradeRecord-method show,tradeRecord-method summary,tradeRecord-method tradeRecord tradeRecord-class
Discretize a set of values into a set of trading signalstrading.signals
Simulate daily trading using a set of trading signalstrading.simulator
Obtain a set of evaluation metrics for a set of trading actionstradingEvaluation