
Package: DMwR2 (via r-universe)
August 28, 2024

Type Package

Title Functions and Data for the Second Edition of ``Data Mining with
R''

Description Functions and data accompanying the second edition of the
book ``Data Mining with R, learning with case studies'' by Luis
Torgo, published by CRC Press.

Version 0.0.2

Depends R(>= 3.0), methods

Imports xts (>= 0.9-7), zoo (>= 1.7-10), class (>= 7.3-14), rpart (>=
4.1-10), quantmod (>= 0.4-5), dplyr (>= 0.4.3), readr (>=
1.0.0), DBI (>= 0.5)

Date 2016-10-12

URL https://github.com/ltorgo/DMwR2

BugReports https://github.com/ltorgo/DMwR2/issues

License GPL (>=2)

LazyLoad yes

LazyData yes

Repository https://ltorgo.r-universe.dev

RemoteUrl https://github.com/ltorgo/dmwr2

RemoteRef HEAD

RemoteSha c19cb08742040b245b1c5c03069ccbe5643aff72

Contents
DMwR2-package . 2
algae . 3
algae.sols . 3
centralImputation . 4
centralValue . 5
createEmbedDS . 6

1

https://github.com/ltorgo/DMwR2
https://github.com/ltorgo/DMwR2/issues

2 DMwR2-package

dist.to.knn . 7
GSPC . 8
kNN . 8
knneigh.vect . 10
knnImputation . 11
lofactor . 12
manyNAs . 13
nrLinesFile . 14
outliers.ranking . 15
reachability . 18
rpartXse . 19
rt.prune . 21
sales . 22
sampleCSV . 22
sampleDBMS . 24
SelfTrain . 25
sigs.PR . 28
SoftMax . 29
sp500 . 30
test.algae . 31
tradeRecord-class . 31
trading.signals . 33
trading.simulator . 34
tradingEvaluation . 38

Index 42

DMwR2-package Functions and data for the second edition of the book "Data Mining
with R"

Description

This package includes functions and data accompanying the book "Data Mining with R, learning
with case studies - 2nd Edition" by Luis Torgo, published by CRC Press

Author(s)

Luis Torgo

Maintainer: Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2016) Data Mining using R: learning with case studies, second edition, Chapman &
Hall/CRC (ISBN-13: 978-1482234893).

http://ltorgo.github.io/DMwR2

http://ltorgo.github.io/DMwR2

algae 3

algae Training data for predicting algae blooms

Description

This data set contains observations on 11 variables as well as the concentration levels of 7 harm-
ful algae. Values were measured in several European rivers. The 11 predictor variables include 3
contextual variables (season, size and speed) describing the water sample, plus 8 chemical concen-
tration measurements.

Usage

algae

Format

A data frame with 200 observations and 18 columns.

Source

ERUDIT http://www.erudit.de/ - European Network for Fuzzy Logic and Uncertainty Mod-
elling in Information Technology.

algae.sols The solutions for the test data set for predicting algae blooms

Description

This data set contains the values of the 7 harmful algae for the 140 test observations in the test set
test.algae.

Usage

algae.sols

Format

A data frame with 140 observations and 7 columns.

Source

ERUDIT http://www.erudit.de/ - European Network for Fuzzy Logic and Uncertainty Mod-
elling in Information Technology.

http://www.erudit.de/
http://www.erudit.de/

4 centralImputation

centralImputation Fill in NA values with central statistics

Description

This function fills in any NA value in all columns of a data frame with the statistic of centrality
(given by the function centralvalue()) of the respective column.

Usage

centralImputation(data)

Arguments

data The data frame

Value

A new data frame with no NA values

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2016) Data Mining using R: learning with case studies, second edition, Chapman &
Hall/CRC (ISBN-13: 978-1482234893).

http://ltorgo.github.io/DMwR2

See Also

knnImputation, centralValue, complete.cases, na.omit

Examples

data(algae,package="DMwR2")
cleanAlgae <- centralImputation(algae)
summary(cleanAlgae)

http://ltorgo.github.io/DMwR2

centralValue 5

centralValue Obtain statistic of centrality

Description

This function obtains a statistic of centrality of a variable given a sample of its values.

Usage

centralValue(x, ws = NULL)

Arguments

x A vector of values (the sample).
ws A vector of case weights (defaulting to NULL, i.e. no case weights).

Details

If the variable is numeric it returns de median of the given sample, if it is a factor it returns the
mode. In other cases it tries to convert to a factor and then returns the mode.

Value

A number if the variable is numeric. A string with the name of the most frequent nominal value,
otherwise.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2016) Data Mining using R: learning with case studies, second edition, Chapman &
Hall/CRC (ISBN-13: 978-1482234893).

http://ltorgo.github.io/DMwR2

See Also

mean, median

Examples

An example with numerical data
x <- rnorm(100)
centralValue(x)
An example with nominal data
y <-
factor(sample(1:10,200,replace=TRUE),levels=1:10,labels=paste('v',1:10,sep=''))
centralValue(y)

http://ltorgo.github.io/DMwR2

6 createEmbedDS

createEmbedDS Creates an embeded data set from an univariate time series

Description

Function for creating and embeded data set from a univariate time series given an embed size

Usage

createEmbedDS(s, emb=4)

Arguments

s A univariate time series (can be a numeric vector or a xts object)

emb The size of the embed for creating the data set (defaults to 4)

Details

The function creates a data set corresponding to the embed of a certain size of a given univariate
time series.

For instance for an embed of size 3 each row of the data set will contain the value of the series at
time t, t-1 and t-2.

Value

Either a matrix or a multivariate xts, depending on whether the input series is a numberic vector or
a univariate xts, respectively.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2016) Data Mining using R: learning with case studies, second edition, Chapman &
Hall/CRC (ISBN-13: 978-1482234893).

http://ltorgo.github.io/DMwR2

See Also

embed

http://ltorgo.github.io/DMwR2

dist.to.knn 7

Examples

A simple example with a random time series
x <- rnorm(100)
head(x)
dataSet <- createEmbedDS(x,emb=5)
head(dataSet)

dist.to.knn An auxiliary function of lofactor()

Description

This function returns an object in which columns contain the indices of the first k neighbors followed
by the distances to each of these neighbors.

Usage

dist.to.knn(dataset, neighbors)

Arguments

dataset A data set that will be internally coerced into a matrix.
neighbors The number of neighbours.

Details

This function is strongly based on the code provided by Acuna et. al. (2009) for the previously
available dprep package.

Value

A matrix

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Acuna, E., and Members of the CASTLE group at UPR-Mayaguez, (2009). dprep: Data prepro-
cessing and visualization functions for classification. R package version 2.1.

Torgo, L. (2016) Data Mining using R: learning with case studies, second edition, Chapman &
Hall/CRC (ISBN-13: 978-1482234893).

http://ltorgo.github.io/DMwR2

See Also

lofactor

http://ltorgo.github.io/DMwR2

8 kNN

GSPC A set of daily quotes for SP500

Description

This is a xts object containing the daily quotes of the SP500 sotck index from 1970-01-02 till
2009-09-15 (10,022 daily sessions). For each day information is given on the Open, High, Low and
Close prices, and also for the Volume and Adjusted close price.

Usage

GSPC

Format

A xts object with a data matrix with 10,022 rows and 6 columns.

Source

Yahoo Finance

kNN k-Nearest Neighbour Classification

Description

This function provides a formula interface to the existing knn() function of package class. On top
of this type of convinient interface, the function also allows standardization of the given data.

Usage

kNN(form, train, test, stand = TRUE, stand.stats = NULL, ...)

Arguments

form An object of the class formula describing the functional form of the classifica-
tion model.

train The data to be used as training set.

test The data set for which we want to obtain the k-NN classification, i.e. the test
set.

stand A boolean indicating whether the training data should be previously normalized
before obtaining the k-NN predictions (defaults to TRUE).

kNN 9

stand.stats This argument allows the user to supply the centrality and spread statistics that
will drive the standardization. If not supplied they will default to the statistics
used in the function scale(). If supplied they should be a list with two com-
ponents, each beig a vector with as many positions as there are columns in the
data set. The first vector should contain the centrality statistics for each column,
while the second vector should contain the spread statistc values.

... Any other parameters that will be forward to the knn() function of package
class.

Details

This function is essentially a convenience function that provides a formula-based interface to the al-
ready existing knn() function of package class. On top of this type of interface it also incorporates
some facilities in terms of standardization of the data before the k-nearest neighbour classification
algorithm is applied. This algorithm is based on the distances between observations, which are
known to be very sensitive to different scales of the variables and thus the usefulness of standard-
ization.

Value

The return value is the same as in the knn() function of package class. This is a factor of classifi-
cations of the test set cases.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2016) Data Mining using R: learning with case studies, second edition, Chapman &
Hall/CRC (ISBN-13: 978-1482234893).

http://ltorgo.github.io/DMwR2

See Also

knn, knn1, knn.cv

Examples

A small example with the IRIS data set
data(iris)

Split in train + test set
idxs <- sample(1:nrow(iris),as.integer(0.7*nrow(iris)))
trainIris <- iris[idxs,]
testIris <- iris[-idxs,]

A 3-nearest neighbours model with no standardization
nn3 <- kNN(Species ~ .,trainIris,testIris,stand=FALSE,k=3)

http://ltorgo.github.io/DMwR2

10 knneigh.vect

The resulting confusion matrix
table(testIris[,'Species'],nn3)

Now a 5-nearest neighbours model with standardization
nn5 <- kNN(Species ~ .,trainIris,testIris,stand=TRUE,k=5)

The resulting confusion matrix
table(testIris[,'Species'],nn5)

knneigh.vect An auxiliary function of lofactor()

Description

Function that returns the distance from a vector x to its k-nearest-neighbors in the matrix data

Usage

knneigh.vect(x, data, k)

Arguments

x An observation.
data A data set that will be internally coerced into a matrix.
k The number of neighbours.

Details

This function is strongly based on the code provided by Acuna et. al. (2009) for the previously
available dprep package.

Value

A vector.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2016) Data Mining using R: learning with case studies, second edition, Chapman &
Hall/CRC (ISBN-13: 978-1482234893).
http://ltorgo.github.io/DMwR2

See Also

lofactor

http://ltorgo.github.io/DMwR2

knnImputation 11

knnImputation Fill in NA values with the values of the nearest neighbours

Description

Function that fills in all NA values using the k Nearest Neighbours of each case with NA values.
By default it uses the values of the neighbours and obtains an weighted (by the distance to the case)
average of their values to fill in the unknows. If meth=’median’ it uses the median/most frequent
value, instead.

Usage

knnImputation(data, k = 10, scale = TRUE, meth = "weighAvg",
distData = NULL)

Arguments

data A data frame with the data set

k The number of nearest neighbours to use (defaults to 10)

scale Boolean setting if the data should be scale before finding the nearest neighbours
(defaults to T)

meth String indicating the method used to calculate the value to fill in each NA. Avail-
able values are ’median’ or ’weighAvg’ (the default).

distData Optionally you may sepecify here a data frame containing the data set that
should be used to find the neighbours. This is usefull when filling in NA values
on a test set, where you should use only information from the training set. This
defaults to NULL, which means that the neighbours will be searched in data

Details

This function uses the k-nearest neighbours to fill in the unknown (NA) values in a data set. For
each case with any NA value it will search for its k most similar cases and use the values of these
cases to fill in the unknowns.

If meth='median' the function will use either the median (in case of numeric variables) or the most
frequent value (in case of factors), of the neighbours to fill in the NAs. If meth='weighAvg' the
function will use a weighted average of the values of the neighbours. The weights are given by
exp(-dist(k,x) where dist(k,x) is the euclidean distance between the case with NAs (x) and
the neighbour k.

Value

A data frame without NA values

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

12 lofactor

References

Torgo, L. (2016) Data Mining using R: learning with case studies, second edition, Chapman &
Hall/CRC (ISBN-13: 978-1482234893).

http://ltorgo.github.io/DMwR2

See Also

centralImputation, centralValue, complete.cases, na.omit

Examples

data(algae)
cleanAlgae <- knnImputation(algae)
summary(cleanAlgae)

lofactor An implementation of the LOF algorithm

Description

This function obtain local outlier factors using the LOF algorithm. Namely, given a data set it
produces a vector of local outlier factors for each case.

Usage

lofactor(data, k)

Arguments

data A data set that will be internally coerced into a matrix.

k The number of neighbours that will be used in the calculation of the local outlier
factors.

Details

This function re-implements the code previously made available in the dprep package (Acuna et.
al., 2009) that was removed from CRAN. This code in turn is an implementation of the LOF method
by Breunig et. al. (2000). See this reference to understand the full details on how these local outlier
factors are calculated for each case in a data set.

Value

The function returns a vector of local outlier factors (numbers). This vector has as many values as
there are rows in the original data set.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

http://ltorgo.github.io/DMwR2

manyNAs 13

References

Acuna, E., and Members of the CASTLE group at UPR-Mayaguez, (2009). dprep: Data prepro-
cessing and visualization functions for classification. R package version 2.1.

Breunig, M., Kriegel, H., Ng, R., and Sander, J. (2000). LOF: identifying density-based local
outliers. In ACM Int. Conf. on Management of Data, pages 93-104.

Torgo, L. (2016) Data Mining using R: learning with case studies, second edition, Chapman &
Hall/CRC (ISBN-13: 978-1482234893).

http://ltorgo.github.io/DMwR2

Examples

data(iris)
lof.scores <- lofactor(iris[,-5],10)

manyNAs Find rows with too many NA values

Description

Small utility function to obtain the number of the rows in a data frame that have a "large" number
of unknown values. "Large" can be defined either as a proportion of the number of columns or as
the number in itself.

Usage

manyNAs(data, nORp = 0.2)

Arguments

data A data frame with the data set.

nORp A number controlling when a row is considered to have too many NA values
(defaults to 0.2, i.e. 20% of the columns). If no rows satisfy the constraint
indicated by the user, a warning is generated.

Value

A vector with the IDs of the rows with too many NA values. If there are no rows with many NA
values and error is generated.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

http://ltorgo.github.io/DMwR2

14 nrLinesFile

References

Torgo, L. (2016) Data Mining using R: learning with case studies, second edition, Chapman &
Hall/CRC (ISBN-13: 978-1482234893).

http://ltorgo.github.io/DMwR2

See Also

complete.cases, na.omit

Examples

data(algae)
manyNAs(algae)

nrLinesFile Counts the number of lines of a file

Description

Function for counting the number of lines of very large text files. Note that it only works on unix-
based systems as it uses the wc command line utility

Usage

nrLinesFile(f)

Arguments

f A file name (a string)

Details

The function creates a data set corresponding to the embed of a certain size of a given univariate
time series.

For instance for an embed of size 3 each row of the data set will contain the value of the series at
time t, t-1 and t-2.

Value

An integer

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

http://ltorgo.github.io/DMwR2

outliers.ranking 15

References

Torgo, L. (2016) Data Mining using R: learning with case studies, second edition, Chapman &
Hall/CRC (ISBN-13: 978-1482234893).

http://ltorgo.github.io/DMwR2

See Also

sampleCSV

outliers.ranking Obtain outlier rankings

Description

This function uses hierarchical clustering to obtain a ranking of outlierness for a set of cases. The
ranking is obtained on the basis of the path each case follows within the merging steps of a agglom-
erative hierarchical clustering method. See the references for further technical details on how these
rankings are obtained.

Usage

outliers.ranking(data, test.data = NULL, method = "sizeDiff",
method.pars = NULL,
clus = list(dist = "euclidean",alg = "hclust",

meth = "ward.D"),
power = 1, verb = F)

Arguments

data The data set to be ranked according to outlyingness. This parameter can also
be the distance matrix of your additional data set, in case you wish to calculate
these distances "outside" of this function.

test.data If a data set is provided in this argument, then the rankings are obtained for
these cases and not for the cases provided in the argument data. The clustering
process driving the obtention of the rankings is carried out on the union of the
two sets of data (data and test.data), but the resulting outlier ranking factors
are only for the observations belonging to this set. This parameter defaults to
NULL.

method The method used to obtain the outlier ranking factors (see the Details section).
Defaults to "sizeDiff".

method.pars A list with the parameter values specific to the method selected for obtaining the
outlier ranks (see the Details section).

http://ltorgo.github.io/DMwR2

16 outliers.ranking

clus This is a list that provides several parameters of the clustering process that drives
the calculation of the outlier raking factors. If the parameter data is not a dis-
tance function, then this list should contain a component named dist with a
value that should be one of the possible values of the parameter method the
the function dist() (see the help of this function for further details). The list
should also contain a component named alg with the name of the clustering
algorithm that should be used. Currently, valid names are either "hclust" (the
default) or "diana". Finally, in case the clustering algorithm is "hclust" then the
list should also contain a component named meth with the name of the agglom-
erative method to use in the hierarchical clustering algorithm. This should be
a valid value of the parameter method of the function hclust() (check its help
page for further details).

power Integer value. It allows to raise the distance matrix to some power with the goal
of "amplifying" the distance values (defaults to 1).

verb Boolean value that determines the level of verbosity of the function (default to
FALSE).

Details

This function produces outlier ranking factors for a set of cases. The methodology used for ob-
taining these factors is described in Section 4.4.1.3 of the book Data Mining with R (Torgo, 2010)
and more details can be obtained in Torgo (2007). The methodology is based on the simple idea of
using the information provided by an agglomerative hierarchical clustering algorithm to infer the
degree of outlyingness of the observations. The basic assumption is that outliers should offer "more
resistance" to being clustered, i.e. being merged on large groups of observations.

The function was written to be used with the outcome of the hclust() R function that implements
several agglomerative clustering methods. Although in theory the methodology could be used with
any other agglomerative hierarchical clustering algorithm, the fact is that the code of this implemen-
tation strongly depends on the data structures produced by the hclust() function. As such if you
wish to change the function to be able to use other clustering algorithms you should ensure that the
data structures it produces are compatible with the requirements of our function. Specifically, your
clustering algorithm should produce a list with a component named merge that should be a matrix
describing the merging steps of the clustering process (see the help page of the hclust() function
for a full description of this data structure). This is the only data structure that is required by our
function and that is used from the object returned by clustering algorithm. The diana() clustering
algorithm also produces this type of information and thus can also be used with our function by
providing the value "diana" on the component alg of the list forming the parameter clus.

There are essentially two ways of using this function. The first consists in giving it a data set on the
parameter data and the function will rank these observations according to their outlyingness. The
other consists in specifying two sets of data. One is the set for which you want the outlyingness
factors that should be given on the parameter test.data. The second set is provided on the data
parameter and it is used to increase the ammount of data used in the clustering process to improve
the statistical reliability of the process.

In the first way of using this function that was described above the user can either supply the data
set or the respective distance matrix. If the data set is provided then the user should specify the
type of distance metric it should be used to calculate the distances between the observations. This
is done by including a distance calculation method in the "dist" component of the list provided in

outliers.ranking 17

parameter clus. This method should be a valid value of the parameter method of the R function
dist() (see its help for details).

This function currently implements three different methods for obtaing outlier ranking factors from
the clustering process. These are: "linear", "sigmoid" and "sizeDiff" (the default). Irrespectively,
of this method the outlyingness factor of observation X is obtained by: OF_H(X) = max_i of_i(X),
where i represents the different merging steps of the clustering process and it goes from 1 to N-1,
where N is the size of the data set to be clustered. The three methods differ in the way they calculate
of_i(X) for each merging step. In the "linear" method of_i(X) = i / (N-1) * p(|g|), where g is the
group to which X belongs at the merging step i (each merging step involves two groups), and |g| is
the size of that group. The function p() is a penalization factor depending on the size of the group.
The larger this size the smaller the value of p(), p(s) = I(s < thr) * (1 - (s-1) / (N-2)), where I() is
an indicator function and thr is a threshold defined as perc*N. The user should set the value of perc
by including a component named "sz.perc" in the list provided in the parameter method.pars. In
the "sigmoid" method of_i(X) = exp(-2 * (i - (N-1))^2 / (N-1)^2) * p(|g|), where the p() function
has the same meaning as in the "linear" method but this time is defined as p(s) = I(s < 2*thr) * (1 -
exp(-4 * (s-2*thr)^2 / (2*thr)^2)). Again thr is perc*N and the user must set the value of perc by
including a component named "sz.perc" in the list provided in the parameter method.pars. Finally,
the method "sizeDiff" defines of_i(X) = max (0, (|g_y,i| - |g_x,i|) / (|g_y,i| + |g_x,i|)), where g_y,i
and g_x,i are the two groups involved in the merge at step i, and g_x,i is the group which X belongs
to. Note that if X belongs to the larger of the two groups this will get X a value of of_i() equals to
zero.

Value

The result of this function is a list with four components. Component rank.outliers contains a
vector with as many positions as there are cases to rank, where position i of the vector contains the
rank order of the observation i. Component prob.outliers is another vector with the same size
this time containing the outlyingness factor (the value of OF_H(X) described in the Details section)
of each observation. Component h contains the object returned by the clustering process. Finally,
component dist contains the distance matrix used i nthe clustering process.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2016) Data Mining using R: learning with case studies, second edition, Chapman &
Hall/CRC (ISBN-13: 978-1482234893).

http://ltorgo.github.io/DMwR2

Torgo, L. (2007) : Resource-bounded Fraud Detection, in Progress in Artificial Intelligence, 13th
Portuguese Conference on Artificial Intelligence, EPIA 2007, Neves et. al (eds.). LNAI, Springer.

Examples

Some examples with algae frequencies in water samples
data(algae)

Trying to obtain a reanking of the 200 samples

http://ltorgo.github.io/DMwR2

18 reachability

o <- outliers.ranking(algae)

As you may have observed the function complained about some problem
with the dist() function. The problem is that the algae data frame
contains columns (the first 3) that are factors and the dist() function
assumes all numeric data.
We can solve the problem by calculating the distance matrix "outside"
using the daisy() function that handles mixed-mode data, as show in
the code below that requires the R package "cluster" to be available
dm <- daisy(algae)
o <- outliers.ranking(dm)

Now let us check the outlier ranking factors ordered by decreasing
score of outlyingness
o$prob.outliers[o$rank.outliers]

Another example with detection of fraudulent transactions
data(sales)

trying to obtain the outlier ranks for the set of transactions of a
salesperson regarding one particular product, taking into
consideration the overall existing transactions of that product
s <- sales[sales$Prod == 'p1',c(1,3:4)] # transactions of product p1
tr <- na.omit(s[s$ID != 'v431',-1]) # all except salesperson v431
ts <- na.omit(s[s$ID == 'v431',-1])

o <- outliers.ranking(data=tr,test.data=ts,
clus=list(dist='euclidean',alg='hclust',meth='average'))

The outlyingness factor of the transactions of this salesperson
o$prob.outliers

reachability An auxiliary function of lofactor()

Description

This function computes the reachability measure for each instance of a dataset. This result is used
later to compute the Local Outlyingness Factor.

Usage

reachability(distdata, k)

Arguments

distdata The matrix of distances.

k The number of neighbors.

rpartXse 19

Details

This function is strongly based on the code provided by Acuna et. al. (2009) for the previously
available dprep package.

Value

A vector.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Acuna, E., and Members of the CASTLE group at UPR-Mayaguez, (2009). dprep: Data prepro-
cessing and visualization functions for classification. R package version 2.1.

Torgo, L. (2016) Data Mining using R: learning with case studies, second edition, Chapman &
Hall/CRC (ISBN-13: 978-1482234893).

http://ltorgo.github.io/DMwR2

See Also

lofactor

rpartXse Obtain a tree-based model

Description

This function is based on the tree-based framework provided by the rpart package (Therneau et.
al. 2010). It basically, integrates the tree growth and tree post-pruning in a single function call. The
post-pruning phase is essentially the 1-SE rule described in the CART book (Breiman et. al. 1984).

Usage

rpartXse(form, data, se = 1, cp = 0, minsplit = 6, verbose = F, ...)

Arguments

form A formula describing the prediction problem

data A data frame containg the training data to be used to obtain the tree-based model

se A value with the number of standard errors to use in the post-pruning of the tree
using the SE rule (defaults to 1)

cp A value that controls the stopping criteria used to stop the initial tree growth
(defaults to 0)

http://ltorgo.github.io/DMwR2

20 rpartXse

minsplit A value that controls the stopping criteria used to stop the initial tree growth
(defaults to 6)

verbose The level of verbosity of the function (defaults to F)

... Any other arguments that are passed to the rpart() function

Details

The x-SE rule for tree post-pruning is based on the cross-validation estimates of the error of the
sub-trees of the initially grown tree, together with the standard errors of these estimates. These
values are used to select the final tree model. Namely, the selected tree is the smallest tree with
estimated error less than the B+x*SE, where B is the lowest estimate of error and SE is the standard
error of this B estimate.

Value

A rpart object

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Therneau, T. M. and Atkinson, B.; port by Brian Ripley. (2010). rpart: Recursive Partitioning. R
package version 3.1-46.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and regression trees.
Statistics/Probability Series. Wadsworth & Brooks/Cole Advanced Books & Software.

Torgo, L. (2016) Data Mining using R: learning with case studies, second edition, Chapman &
Hall/CRC (ISBN-13: 978-1482234893).

http://ltorgo.github.io/DMwR2

See Also

rt.prune, rpart, prune.rpart

Examples

data(iris)
tree <- rpartXse(Species ~ ., iris)
tree

A visual representation of the classification tree
Not run:
prettyTree(tree)

End(Not run)

http://ltorgo.github.io/DMwR2

rt.prune 21

rt.prune Prune a tree-based model using the SE rule

Description

This function implements the SE post pruning rule described in the CART book (Breiman et. al.,
1984)

Usage

rt.prune(tree, se = 1, verbose = T, ...)

Arguments

tree An rpart object

se The value of the SE threshold (defaulting to 1)

verbose The level of verbosity (defaulting to T)

... Any other arguments passed to the function prune.rpart()

Details

The x-SE rule for tree post-pruning is based on the cross-validation estimates of the error of the
sub-trees of the initially grown tree, together with the standard errors of these estimates. These
values are used to select the final tree model. Namely, the selected tree is the smallest tree with
estimated error less than the B+x*SE, where B is the lowest estimate of error and SE is the standard
error of this B estimate.

Value

A rpart object

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and regression trees.
Statistics/Probability Series. Wadsworth & Brooks/Cole Advanced Books & Software.

Torgo, L. (2016) Data Mining using R: learning with case studies, second edition, Chapman &
Hall/CRC (ISBN-13: 978-1482234893).

http://ltorgo.github.io/DMwR2

See Also

rt.prune, rpart, prune.rpart

http://ltorgo.github.io/DMwR2

22 sampleCSV

Examples

data(iris)
tree <- rpartXse(Species ~ ., iris)
tree

A visual representation of the classification tree
Not run:
prettyTree(tree)

End(Not run)

sales A data set with sale transaction reports

Description

This data frame contains 401,146 transaction reports. Each report is made by a salesperson iden-
tified by an ID and reports the quantity sold of some product. The data set caontins information
on 5 variables: ID (salesperson ID), Prod (product ID), Quant (the sold quantity), Val (the reported
value of the transaction) and Insp (a factor containing information on a inspection of the report with
possible values ’ok’,’ fraud’ or ’unkn’).

Usage

sales

Format

A data frame with 401,146 rows and 5 columns

Source

Undisclosed

sampleCSV Drawing a random sample of lines from a CSV file

Description

Function for obtaining a random sample of lines from a very large CSV file, whitout having to load
in the full data into memory. Targets situations where the full data does not fit in the computer
memory so usage of the standard sample function is not possible.

Usage

sampleCSV(file, percORn, nrLines, header=TRUE, mxPerc=0.5)

sampleCSV 23

Arguments

file A file name (a string)

percORn Either the percentage of number of rows of the file or the actual number of rows,
the sample should have

nrLines Optionally you may indicate the number of rows of the file if you know it before-
hand, otherwise the function will count them for you

header Whether the file has a header line or not (a Boolean value)

mxPerc A maximum threshold for the percentage the sample is allowed to have (defaults
to 0.5)

Details

This function can be used to draw a random sample of lines from a very large CSV file. This is
particularly usefull when you can not afford to load the file into memory to use R functions like
sample to obtain the sample.

The function obtains the sample of rows without actually loading the full data into memory - only
the final sample is loaded into main memory.

The function is based on unix-based utility programs (perl and wc) so it is limited to this type
of platforms. The function will not run on other platforms (it will check the system variable
.Platform$OS.type), although you may wish to check the function code and see if you can adapt
it to your platform.

Value

A data frame

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2016) Data Mining using R: learning with case studies, second edition, Chapman &
Hall/CRC (ISBN-13: 978-1482234893).

http://ltorgo.github.io/DMwR2

See Also

nrLinesFile, sample, sampleDBMS

http://ltorgo.github.io/DMwR2

24 sampleDBMS

sampleDBMS Drawing a random sample of records of a table stored in a DBMS

Description

Function for obtaining a random sample of records from a very large table stored in a databased
managment system, whitout having to load in the full table into memory. Targets situations where
the full data does not fit in the computer memory so usage of the standard sample function is not
possible.

Usage

sampleDBMS(dbConn, tbl, percORn, mxPerc=0.5)

Arguments

dbConn A data based connection object from the DBI package, that contains the result
of establishing the connection to your target database in the respective database
managment system.

tbl A string containing the name of the (large) table in the database from which you
want draw a random sample of records.

percORn Either the percentage of number of rows of the file or the actual number of rows,
the sample should have

mxPerc A maximum threshold for the percentage the sample is allowed to have (defaults
to 0.5)

Details

This function can be used to draw a random sample of records from a very large table of a database
managment system. This is particularly usefull when you can not afford to load the full table into
memory to use R functions like sample to obtain the sample.

The function obtains the sample of rows without actually loading the full data into memory - only
the final sample is loaded into main memory.

The function assumes you have alread established and opened a connection to the database and
receives as argument the DBI connection object.

Value

A data frame

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

SelfTrain 25

References

Torgo, L. (2016) Data Mining using R: learning with case studies, second edition, Chapman &
Hall/CRC (ISBN-13: 978-1482234893).

http://ltorgo.github.io/DMwR2

See Also

sampleCSV, sample

Examples

A simple example over a table on a MySQL database
Not run:
library(DBI)
library(RMySQL)
drv <- dbDriver("MySQL") # Loading the MySQL driver
con <- dbConnect(drv,dbname="myDB",

username="myUSER",password="myPASS",
host="localhost")

d <- sampleDBMS(con,"largeTable",10000)

End(Not run)

SelfTrain Self train a model on semi-supervised data

Description

This function can be used to learn a classification model from semi-supervised data. This type of
data includes observations for which the class label is known as well as observation with unknown
class. The function implements a strategy known as self-training to be able to cope with this semi-
supervised learning problem. The function can be applied to any classification algorithm that is able
to obtain class probabilities when asked to classify a set of test cases (see the Details section).

Usage

SelfTrain(form,data,
learner, learner.pars=list(),
pred, pred.pars=list(),
thrConf=0.9,
maxIts=10,percFull=1,
verbose=FALSE)

http://ltorgo.github.io/DMwR2

26 SelfTrain

Arguments

form A formula describing the prediction problem.

data A data frame containing the available training set that is supposed to contain
some rows for which the value of the target variable is unknown (i.e. equal to
NA).

learner An object of class learner (see class?learner for details), indicating the base
classification algorithm to use in the self-training process.

learner.pars A list with parameters that are to be passed to the learner function at each
self-training iteration.

pred A string with the name of a function that will carry out the probabilistic clas-
sification tasks that will be necessary during the self training process (see the
Details section).

pred.pars A list with parameters that are to be passed to the pred function at each self-
training iteration when obtaining the predictions of the models.

thrConf A number between 0 and 1, indicating the required classification confidence for
an unlabelled case to be added to the labelled data set with the label predicted
predicted by the classification algorithm.

maxIts The maximum number of iterations of the self-training process.

percFull A number between 0 and 1. If the percentage of labelled cases reaches this value
the self-training process is stoped.

verbose A boolean indicating the verbosity level of the function.

Details

Self-training (e.g. Yarowsky, 1995) is a well-known strategy to handle classification problems
where a subset of the available training data has an unknown class label. The general idea is to
use an iterative process where at each step we try to augment the set of labelled cases by "asking"
the current classification model to label the unlabelled cases and choosing the ones for which the
model is more confident on the assigned label to be added to the labeled set. With this extended
set of labelled cases a new classification model is learned and the process is repeated until certain
termination criteria are met.

This implementation of the self-training algorithm is generic in the sense that it can be used with
any baseline classification learner provided this model is able to produce confidence scores for its
predictions. The user needs to take care of the learning of the models and of the classification of the
unlabelled cases. This is done as follows. The user supplies a learner object (see class?learner
for details) in parameter learner to represent the algorithm to be used to obtain the classification
models on each iteration of the self-training process. Furthermore, the user should create a function,
whose named should be given in the parameter predFunc, that takes care of the classification of the
currently unlabelled cases, on each iteration. This function should be written so that it receives as
first argument the learned classification model (with the current training set), and a data frame with
test cases in the second argument. This user-defined function should return a data frame with two
columns and as many rows as there are rows in the given test set. The first column of this data frame
should contain the assigned class labels by the provided classification model, for the respective test
case. The second column should contain the confidence (a number between 0 and 1) associated to
that classification. See the Examples section for an illustration of such user-defined function.

SelfTrain 27

This function implements the iterative process of self training. On each iteration the provided
learner is called with the set of labelled cases within the given data set. Unlabelled cases should have
the value NA on the column of the target variable. The obtained classification model is then passed
to the user-defined "predFunc" function together with the subset of the data that is unlabelled. As
mentioned above this function returns a set of predicted class labels and the respective confidence.
Test cases with confidence above the user-specified threshold (parameter thrConf) will be added to
the labelled training set, with the label assigned by the current model. With this new training set a
new classification model is obtained and the overall process repeated.

The self-training process stops if either there are no classifications that reach the required confidence
level, if the maximum number of iterations is reached, or if the size of the current labelled training
set is alread the target percentage of the given data set.

Value

This function returns a classification model. This will be an object of the same class as the object
returned by the base classification learned provided by the user.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2016) Data Mining using R: learning with case studies, second edition, Chapman &
Hall/CRC (ISBN-13: 978-1482234893).

http://ltorgo.github.io/DMwR2

Yarowski, D. (1995). Unsupervised word sense disambiguation rivaling supervised methods. In
Proceedings of the 33rd Annual Meeting of the association for Computational Linguistics (ACL),
pages 189-196.

Examples

Small example with the Iris classification data set
data(iris)

Dividing the data set into train and test sets
idx <- sample(150,100)
tr <- iris[idx,]
ts <- iris[-idx,]

Learn a tree with the full train set and test it
stdTree <- rpartXse(Species~ .,tr,se=0.5)
table(predict(stdTree,ts,type='class'),ts$Species)

Now let us create another training set with most of the target
variable values unknown
trSelfT <- tr
nas <- sample(100,70)
trSelfT[nas,'Species'] <- NA

http://ltorgo.github.io/DMwR2

28 sigs.PR

Learn a tree using only the labelled cases and test it
baseTree <- rpartXse(Species~ .,trSelfT[-nas,],se=0.5)
table(predict(baseTree,ts,type='class'),ts$Species)

The user-defined function that will be used in the self-training process
f <- function(m,d) {

l <- predict(m,d,type='class')
c <- apply(predict(m,d),1,max)
data.frame(cl=l,p=c)

}

Self train the same model using the semi-superside data and test the
resulting model
treeSelfT <- SelfTrain(Species~ .,trSelfT,'rpartXse',list(se=0.5),'f')
table(predict(treeSelfT,ts,type='class'),ts$Species)

sigs.PR Precision and recall of a set of predicted trading signals

Description

This function calculates the values of Precision and Recall of a set of predicted signals, given the
set of true signals. The function assumes three types of signals: ’b’ (Buy), ’s’ (Sell) and ’h’ (Hold).
The function returns the values of Precision and Recall for the buy, sell and sell+buy signals.

Usage

sigs.PR(preds, trues)

Arguments

preds A factor with the predicted signals (values should be ’b’,’s’, or ’h’)

trues A factor with the predicted signals (values should be ’b’,’s’, or ’h’)

Details

Precision and recall are two evaluation statistics often used to evaluate predictions for rare events.
In this case we are talking about buy and sell opportunities.

Precision is the proportion of the events signaled by a model that actually occurred. Recall is a
proportion of events that occurred that the model was able to capture. Ideally, the models should
aim to obtain 100% precision and recall. However, it is often the case that there is a trade-off
between the two statistics.

Value

A matrix with three rows and two columns. The columns are the values of Precision and Recall,
respectively. The rows are the values for the three different events (sell, buy and sell+buy).

SoftMax 29

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2016) Data Mining using R: learning with case studies, second edition, Chapman &
Hall/CRC (ISBN-13: 978-1482234893).

http://ltorgo.github.io/DMwR2

See Also

trading.signals, tradingEvaluation, trading.simulator

Examples

A simple illustrative example use with random signals
ind <- rnorm(sd=0.3,100)
sigs <- trading.signals(ind,b.t=0.1,s.t=-0.1)
indT <- rnorm(sd=0.3,100)
sigsT <- trading.signals(indT,b.t=0.1,s.t=-0.1)
sigs.PR(sigs,sigsT)

SoftMax Normalize a set of continuous values using SoftMax

Description

Function for normalizing the range of values of a continuous variable using the SoftMax function
(Pyle, 199).

Usage

SoftMax(x, lambda = 2, avg = mean(x, na.rm = T), std = sd(x, na.rm = T))

Arguments

x A vector with numeric values

lambda A numeric value entering the formula of the soft max function (see Details).
Defaults to 2.

avg The statistic of centrality of the continuous variable being normalized (defaults
to the mean of the values in x).

std The statistic of spread of the continuous variable being normalized (defaults to
the standard deviation of the values in x).

http://ltorgo.github.io/DMwR2

30 sp500

Details

The Soft Max normalization consist in transforming the value x into

1 / [1+ exp((x-AVG(x))/(LAMBDA*SD(X)/2*PI))]

Value

An object with the same dimensions as x but with the values normalized

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Pyle, D. (1999). Data preparation for data mining. Morgan Kaufmann.

Torgo, L. (2016) Data Mining using R: learning with case studies, second edition, Chapman &
Hall/CRC (ISBN-13: 978-1482234893).

http://ltorgo.github.io/DMwR2

See Also

scale

Examples

A simple example with the iris data set
data(iris)
summary(SoftMax(iris[["Petal.Length"]]))
summary(iris[["Petal.Length"]])

sp500 A set of daily quotes for SP500 in CSV Format

Description

This is a CSV file containing the daily quotes of the SP500 sotck index from 1970-01-02 till 2015-
12-25 . For each day information is given on the Open, High, Low and Close prices, and also for
the Volume and Adjusted close price.

Usage

sp500

Format

A CSV file with a data matrix.

http://ltorgo.github.io/DMwR2

test.algae 31

Source

Yahoo Finance

test.algae Testing data for predicting algae blooms

Description

This data set contains observations on 11 variables as well as the concentration levels of 7 harm-
ful algae. Values were measured in several European rivers. The 11 predictor variables include 3
contextual variables (season, size and speed) describing the water sample, plus 8 chemical concen-
tration measurements.

Usage

test.algae

Format

A data frame with 140 observations and 18 columns.

Source

ERUDIT http://www.erudit.de/ - European Network for Fuzzy Logic and Uncertainty Mod-
elling in Information Technology.

tradeRecord-class Class "tradeRecord"

Description

This is a class that contains the result of a call to the function trading.simulator(). It contains
information on the trading performance of a set of signals on a given set of "future" market quotes.

Objects from the Class

Objects can be created by calls of the form tradeRecord(...). These objects contain information
on i) the trading variables for each day in the simulation period; ii) on the positions hold during
this period; iii) on the value used for transaction costs; iv) on the initial capital for the simulation;
v) on the function that implements the trading policy used in the simulation; and vi) on the list of
parameters of this function.

http://www.erudit.de/

32 tradeRecord-class

Slots

trading: Object of class "xts" containing the information on the trading activities through the
testing period. This object has one line for each trading date. For each date it includes in-
formation on the closing price of the market ("Close"), on the order given at the end of that
day ("Order"), on the money available to the trader at the end of that day ("Money"), on the
number of stocks hold by the trader ("N.Stocks"), and on the equity at the end of that day
("Equity").

positions: Object of class "matrix" containing the positions hold by the trader during the simu-
lation period. This is a matrix with seven columns, with as many rows as the number of posi-
tions hold by the trader. The columns of this matrix contain the type of position ("pos.type"),
the number of stocks of the position ("N.stocks"), the date when the position was opened
("Odate"), the open price ("Oprice"), the closing date ("Cdate"), the closing price ("Cprice")
and the percentage return of the position ("result").

trans.cost: Object of class "numeric" with the monetary value of each transaction (market or-
der).

init.cap: Object of class "numeric" with the initial monetary value of the trader.
policy.func: Object of class "character" with the name of the function that should be called

at the end of each day to decide what to do, i.e. the trading policy function. This function is
called with the vector of signals till the current date, the market quotes till today, the current
position of the trader and the currently available money.

policy.pars: Object of class "list" containing a list of extra parameters to be used when calling
the trading policy function (these depend on the function defined by the user).

Methods

plot signature(x = "tradeRecord", y = "ANY"): provides a graphical representation of the trad-
ing results.

show signature(object = "tradeRecord"): shows an object in a proper way.
summary signature(object = "tradeRecord"): provides a summary of the trading results.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2016) Data Mining using R: learning with case studies, second edition, Chapman &
Hall/CRC (ISBN-13: 978-1482234893).

http://ltorgo.github.io/DMwR2

See Also

trading.simulator, tradingEvaluation

Examples

showClass("tradeRecord")

http://ltorgo.github.io/DMwR2

trading.signals 33

trading.signals Discretize a set of values into a set of trading signals

Description

This function transforms a set of numeric values into a set of trading signals according to two
thresholds: one that establishes the limit above which any value will be transformed into a buy
signal (’b’), and the other that sets the value below which we have a sell signal (’s’). Between the
two thresholds we will have a hold signal (’h’).

Usage

trading.signals(vs, b.t, s.t)

Arguments

vs A vector with numeric values

b.t A number representing the buy threshold

s.t A number representing the sell threshold

Value

A factor with three possible values ’b’ (buy), ’s’ (sell) or ’h’ (hold)

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2016) Data Mining using R: learning with case studies, second edition, Chapman &
Hall/CRC (ISBN-13: 978-1482234893).

http://ltorgo.github.io/DMwR2

See Also

trading.signals, tradingEvaluation, trading.simulator

Examples

trading.signals(rnorm(sd=0.5,100),b.t=0.1,s.t=-0.12)

http://ltorgo.github.io/DMwR2

34 trading.simulator

trading.simulator Simulate daily trading using a set of trading signals

Description

This function can be used to obtain the trading performance of a set of signals by simulating daily
trading on a market with these signals according to a user-defined trading policy. The idea is that
the user supplies the actual quotes for the simulation period together with the trading signals to use
during this period. On top of that the user also supplies a function implementing the trading policy
to use. The result is a trading record for this period. This result can then be inspected and used to
obtain several trading performance metrics with other functions.

Usage

trading.simulator(market, signals,
policy.func, policy.pars = list(),
trans.cost = 5, init.cap = 1e+06)

Arguments

market A xts object containing the market quotes for each day of the simulation period.
This object should contain at least the Open, High, Low and Close quotes for
each day. These quotes (with these exact names) are used within the function
and thus are required.

signals A factor with as many signals as there are rows in the market xts object, i.e.
as many signals as there are trading days in the simulation period. The signals
should be ’b’ for Buy, ’s’ for Sell and ’h’ for Hold (actually this information
is solely processed within the user-defined trading policy function which means
that the values may be whatever the writer of this function wants).

policy.func A string with the name of the function that will be called at the end of each day
of the trading period. This user-defined function implements the trading policy
to be used in the simulation. See the Details section for understanding what is
the task of this function.

policy.pars A list with parameters that are passed to the user-defined trading policy function
when it is called at the end of each day.

trans.cost A number with the cost of each market transaction (defaults to 5 monetary units).

init.cap A number with the initial amount of money available for trading at the start of
the simulation period (defaults to 1,000,000 monetary units).

Details

This function can be used to simulate daily trading according to a set of signals. The main param-
eters of this function are the market quotes for the simulation period and the model signals for this
period. Two other parameters are the name of the user-defined trading policy function and its list of
parameters. Finally, we can also specify the cost of each transaction and the initial capital available
for the trader. The simulator will call the user-provided trading policy function at the end of each

trading.simulator 35

daily section, and the function should return the orders that it wants the simulator to carry out. The
simulator carries out these orders on the market and records all activity on several data structures.
The result of the simulator is an object of class tradeRecord containing the information of this
simulation. This object can then be used in other functions to obtain economic evaluation metrics
or graphs of the trading activity.

The key issue in using this function is to create the user-defined trading policy function. These func-
tions should be written using a certain protocol, that is, they should be aware of how the simulator
will call them, and should return the information this simulator is expecting. At the end of each
daily session d, the simulator calls the trading policy function with four main arguments plus any
other parameters the user has provided in the call to the simulator in the parameter policy.pars.
These four arguments are (1) a vector with the predicted signals until day d, (2) the market quotes
(up to d), (3) the currently opened positions, and (4) the money currently available to the trader.
The current positions are stored in a matrix with as many rows as there are open positions at the
end of day d. This matrix has four columns: "pos.type" that can be 1 for a long position or -1 for a
short position; "N.stocks", which is the number of stocks of the position; "Odate", which is the day
on which the position was opened (a number between 1 and d); and "Oprice", which is the price
at which the position was opened. The row names of this matrix contain the IDs of the positions
that are relevant when we want to indicate the simulator that a certain position is to be closed. All
this information is provided by the simulator to ensure the user can define a broad set of trading
policy functions. The user-defined functions should return a data frame with a set of orders that the
simulator should carry out. This data frame should include the following information (columns):
"order", which should be 1 for buy orders and -1 for sell orders; "order.type", which should be 1 for
market orders that are to be carried out immediately (actually at next day open price), 2 for limit
orders or 3 for stop orders; "val", which should be the quantity of stocks to trade for opening market
orders, NA for closing market orders, or a target price for limit and stop orders; "action", which
should be "open" for orders that are opening a new position or "close" for orders closing an existing
position; and finally, "posID", which should contain the ID of the position that is being closed, if
applicable.

Value

An object of class tradeRecord (see ’class?tradeRecord’ for details).

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2016) Data Mining using R: learning with case studies, second edition, Chapman &
Hall/CRC (ISBN-13: 978-1482234893).

http://ltorgo.github.io/DMwR2

See Also

tradingEvaluation, tradeRecord, trading.signals, sigs.PR

http://ltorgo.github.io/DMwR2

36 trading.simulator

Examples

An example partially taken from chapter 3 of my book Data Mining
with R (Torgo,2010)

First a trading policy function
This function implements a strategy to trade on futures with
long and short positions. Its main ideas are the following:
- all decisions aretaken at the end of the day, that is, after
knowing all daily quotes of the current session.
- if at the end of day d our models issue a sell signal and we
currently do not hold any opened position, we will open a short
position by issuing a sell order. When this order is carried out by
the market at a price pr sometime in the future, we will
immediately post two other orders. The first is a buy limit order
with a limit price of pr - p%, where p% is a target profit margin.
We will wait 10 days for this target to be reached. If the order is
not carried out by this deadline, we will buy at the closing price
of the 10th day. The second order is a buy stop order with a price
limit pr + l%. This order is placed with the goal of limiting our
eventual losses with this position. The order will be executed if
the market reaches the price pr + l%, thus limiting our possible
losses to l%.
- if the end of the day signal is buy the strategy is more or less
the inverse
Not run:
library(xts)
policy.1 <- function(signals,market,opened.pos,money,

bet=0.2,hold.time=10,
exp.prof=0.025, max.loss= 0.05
)

{
d <- NROW(market) # this is the ID of today
orders <- NULL
nOs <- NROW(opened.pos)
nothing to do!
if (!nOs && signals[d] == 'h') return(orders)

First lets check if we can open new positions
i) long positions
if (signals[d] == 'b' && !nOs) {
quant <- round(bet*money/market[d,'Close'],0)
if (quant > 0)

orders <- rbind(orders,
data.frame(order=c(1,-1,-1),order.type=c(1,2,3),

val = c(quant,
market[d,'Close']*(1+exp.prof),
market[d,'Close']*(1-max.loss)

),
action = c('open','close','close'),
posID = c(NA,NA,NA)
)
)

trading.simulator 37

ii) short positions
} else if (signals[d] == 's' && !nOs) {

this is the nr of stocks we already need to buy
because of currently opened short positions
need2buy <- sum(opened.pos[opened.pos[,'pos.type']==-1,

"N.stocks"])*market[d,'Close']
quant <- round(bet*(money-need2buy)/market[d,'Close'],0)
if (quant > 0)

orders <- rbind(orders,
data.frame(order=c(-1,1,1),order.type=c(1,2,3),

val = c(quant,
market[d,'Close']*(1-exp.prof),
market[d,'Close']*(1+max.loss)

),
action = c('open','close','close'),
posID = c(NA,NA,NA)
)
)

}

Now lets check if we need to close positions
because their holding time is over
if (nOs)

for(i in 1:nOs) {
if (d - opened.pos[i,'Odate'] >= hold.time)

orders <- rbind(orders,
data.frame(order=-opened.pos[i,'pos.type'],

order.type=1,
val = NA,
action = 'close',
posID = rownames(opened.pos)[i]
)
)

}

orders
}

Now let us play a bit with the SP500 quotes availabe in our package
data(GSPC)

Let us select the last 3 months as the simulation period
market <- last(GSPC,'3 months')

now let us generate a set of random trading signals for
illustration purpose only
ndays <- nrow(market)
aRandomIndicator <- rnorm(sd=0.3,ndays)
theRandomSignals <- trading.signals(aRandomIndicator,b.t=0.1,s.t=-0.1)

now lets trade!
tradeR <- trading.simulator(market,theRandomSignals,

38 tradingEvaluation

'policy.1',list(exp.prof=0.05,bet=0.2,hold.time=10))

a few stats on the trading performance
summary(tradeR)
tradingEvaluation(tradeR)

End(Not run)
See the performance graphically
Not run:
plot(tradeR,market)

End(Not run)

tradingEvaluation Obtain a set of evaluation metrics for a set of trading actions

Description

This function receives as argument an object of class tradeRecord that is the result of a call to the
trading.simulator() function and produces a set of evaluation metrics of this simulation

Usage

tradingEvaluation(t)

Arguments

t An object of call tradeRecord (see ’class?tradeRecord’ for details)

Details

Given the result of a trading simulation this function calculates:

• The number of trades.
• The number of profitable trades.
• The percentage of profitable trades.
• The profit/loss of the simulation (i.e. the final result).
• The return of the simulation.
• The return over the buy and hold strategy.
• The maximum draw down of the simulation.
• The Sharpe Ration score.
• The average percentage return of the profitable trades.
• The average percentage return of the non-profitable trades.
• The average percentage return of all trades.
• The maximum return of all trades.
• The maximum percentage loss of all trades.

tradingEvaluation 39

Value

A vector of evaluation metric values

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2016) Data Mining using R: learning with case studies, second edition, Chapman &
Hall/CRC (ISBN-13: 978-1482234893).

http://ltorgo.github.io/DMwR2

See Also

tradeRecord, trading.simulator, trading.signals

Examples

An example partially taken from chapter 3 of my book Data Mining
with R (Torgo,2010)

First a trading policy function
This function implements a strategy to trade on futures with
long and short positions. Its main ideas are the following:
- all decisions aretaken at the end of the day, that is, after
knowing all daily quotes of the current session.
- if at the end of day d our models issue a sell signal and we
currently do not hold any opened position, we will open a short
position by issuing a sell order. When this order is carried out by
the market at a price pr sometime in the future, we will
immediately post two other orders. The first is a buy limit order
with a limit price of pr - p%, where p% is a target profit margin.
We will wait 10 days for this target to be reached. If the order is
not carried out by this deadline, we will buy at the closing price
of the 10th day. The second order is a buy stop order with a price
limit pr + l%. This order is placed with the goal of limiting our
eventual losses with this position. The order will be executed if
the market reaches the price pr + l%, thus limiting our possible
losses to l%.
- if the end of the day signal is buy the strategy is more or less
the inverse
Not run:
library(xts)
policy.1 <- function(signals,market,opened.pos,money,

bet=0.2,hold.time=10,
exp.prof=0.025, max.loss= 0.05
)

{
d <- NROW(market) # this is the ID of today
orders <- NULL

http://ltorgo.github.io/DMwR2

40 tradingEvaluation

nOs <- NROW(opened.pos)
nothing to do!
if (!nOs && signals[d] == 'h') return(orders)

First lets check if we can open new positions
i) long positions
if (signals[d] == 'b' && !nOs) {

quant <- round(bet*money/market[d,'Close'],0)
if (quant > 0)

orders <- rbind(orders,
data.frame(order=c(1,-1,-1),order.type=c(1,2,3),

val = c(quant,
market[d,'Close']*(1+exp.prof),
market[d,'Close']*(1-max.loss)

),
action = c('open','close','close'),
posID = c(NA,NA,NA)
)
)

ii) short positions
} else if (signals[d] == 's' && !nOs) {

this is the nr of stocks we already need to buy
because of currently opened short positions
need2buy <- sum(opened.pos[opened.pos[,'pos.type']==-1,

"N.stocks"])*market[d,'Close']
quant <- round(bet*(money-need2buy)/market[d,'Close'],0)
if (quant > 0)

orders <- rbind(orders,
data.frame(order=c(-1,1,1),order.type=c(1,2,3),

val = c(quant,
market[d,'Close']*(1-exp.prof),
market[d,'Close']*(1+max.loss)

),
action = c('open','close','close'),
posID = c(NA,NA,NA)
)
)

}

Now lets check if we need to close positions
because their holding time is over
if (nOs)

for(i in 1:nOs) {
if (d - opened.pos[i,'Odate'] >= hold.time)

orders <- rbind(orders,
data.frame(order=-opened.pos[i,'pos.type'],

order.type=1,
val = NA,
action = 'close',
posID = rownames(opened.pos)[i]
)
)

tradingEvaluation 41

}

orders
}

Now let us play a bit with the SP500 quotes availabe in our package
data(GSPC)

Let us select the last 3 months as the simulation period
market <- last(GSPC,'3 months')

now let us generate a set of random trading signals for
illustration purpose only
ndays <- nrow(market)
aRandomIndicator <- rnorm(sd=0.3,ndays)
theRandomSignals <- trading.signals(aRandomIndicator,b.t=0.1,s.t=-0.1)

now lets trade!
tradeR <- trading.simulator(market,theRandomSignals,

'policy.1',list(exp.prof=0.05,bet=0.2,hold.time=10))

a few stats on the trading performance
tradingEvaluation(tradeR)

End(Not run)

Index

∗ classes
tradeRecord-class, 31

∗ datasets
algae, 3
algae.sols, 3
GSPC, 8
sales, 22
sp500, 30
test.algae, 31

∗ models
centralImputation, 4
createEmbedDS, 6
dist.to.knn, 7
kNN, 8
knneigh.vect, 10
knnImputation, 11
lofactor, 12
manyNAs, 13
nrLinesFile, 14
outliers.ranking, 15
reachability, 18
rpartXse, 19
rt.prune, 21
sampleCSV, 22
sampleDBMS, 24
SelfTrain, 25
sigs.PR, 28
SoftMax, 29
trading.signals, 33
trading.simulator, 34
tradingEvaluation, 38

∗ package
DMwR2-package, 2

∗ univar
centralValue, 5

algae, 3
algae.sols, 3

centralImputation, 4, 12

centralValue, 4, 5, 12
complete.cases, 4, 12, 14
createEmbedDS, 6

dist.to.knn, 7
DMwR2 (DMwR2-package), 2
DMwR2-package, 2

embed, 6

GSPC, 8

kNN, 8
knn, 9
knn.cv, 9
knn1, 9
knneigh.vect, 10
knnImputation, 4, 11

lofactor, 7, 10, 12, 19

manyNAs, 13
mean, 5
median, 5

na.omit, 4, 12, 14
nrLinesFile, 14, 23

outliers.ranking, 15

plot,tradeRecord-method
(tradeRecord-class), 31

prune.rpart, 20, 21

reachability, 18
rpart, 20, 21
rpartXse, 19
rt.prune, 20, 21, 21

sales, 22
sample, 23, 25
sampleCSV, 15, 22, 25

42

INDEX 43

sampleDBMS, 23, 24
scale, 30
SelfTrain, 25
show,tradeRecord-method

(tradeRecord-class), 31
sigs.PR, 28, 35
SoftMax, 29
sp500, 30
summary,tradeRecord-method

(tradeRecord-class), 31

test.algae, 31
tradeRecord, 35, 39
tradeRecord (tradeRecord-class), 31
tradeRecord-class, 31
trading.signals, 29, 33, 33, 35, 39
trading.simulator, 29, 32, 33, 34, 39
tradingEvaluation, 29, 32, 33, 35, 38

	DMwR2-package
	algae
	algae.sols
	centralImputation
	centralValue
	createEmbedDS
	dist.to.knn
	GSPC
	kNN
	knneigh.vect
	knnImputation
	lofactor
	manyNAs
	nrLinesFile
	outliers.ranking
	reachability
	rpartXse
	rt.prune
	sales
	sampleCSV
	sampleDBMS
	SelfTrain
	sigs.PR
	SoftMax
	sp500
	test.algae
	tradeRecord-class
	trading.signals
	trading.simulator
	tradingEvaluation
	Index

