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bootEstimates Performance estimation using (e0 or .632) bootstrap

Description

This function obtains boostrap estimates of performance metrics for a given predictive task and
method to solve it (i.e. a workflow). The function is general in the sense that the workflow function
that the user provides as the solution to the task, can implement or call whatever modeling technique
the user wants.

The function implements both e0 boostrap estimates as well as .632 boostrap. The selection of the
type of boostrap is done through the estTask argument (check the help page of Bootstrap).

Please note that most of the times you will not call this function directly, though there is nothing
wrong in doing it, but instead you will use the function performanceEstimation, that allows you to
carry out performance estimation for multiple workflows on multiple tasks, using some estimation
method like for instance boostrap. Still, when you simply want to have the boostrap estimate for
one workflow on one task, you may use this function directly.

Usage

bootEstimates(wf,task,estTask,cluster)

Arguments

wf an object of the class Workflow representing the modeling approach to be eval-
uated on a certain task.

task an object of the class PredTask representing the prediction task to be used in
the evaluation.

estTask an object of the class EstimationTask indicating the metrics to be estimated
and the boostrap settings to use.

cluster an optional parameter that can either be TRUE or a cluster. In case of TRUE
the function will run in parallel and will internally setup the parallel back-end
(defaulting to using half of the cores in your local machine). You may also setup
outside your parallel back-end (c.f. makeCluster) and then pass the resulting
cluster object to this function using this parameter. In case no value is provided
for this parameter the function will run sequentially.
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Details

The idea of this function is to carry out a bootstrap experiment with the goal of obtaining reliable
estimates of the predictive performance of a certain modeling approach (denoted here as a workflow)
on a given predictive task. Two types of bootstrap estimates are implemented: i) e0 bootstrap and ii)
.632 bootstrap. Bootstrap estimates are obtained by averaging over a set of k scores each obtained
in the following way: i) draw a random sample with replacement with the same size as the original
data set; ii) obtain a model with this sample; iii) test it and obtain the estimates for this run on
the observations of the original data set that were not used in the sample obtained in step i). This
process is repeated k times and the average scores are the bootstrap estimates. The main difference
between e0 and .632 bootstrap is the fact that the latter tries to integrate the e0 estimate with the
resubstitution estimate, i.e. when the model is learned and tested on the full available data sample.

Parallel execution of the estimation experiment is only recommended for minimally large data sets
otherwise you may actually increase the computation time due to communication costs between the
processes.

Value

The result of the function is an object of class EstimationResults.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

Bootstrap, Workflow, standardWF, PredTask, EstimationTask, performanceEstimation, hldEstimates,
loocvEstimates, cvEstimates, mcEstimates, EstimationResults

Examples

## Not run:

## Estimating the MSE of a SVM variant on the
## swiss data, using 50 repetitions of .632 bootstrap
library(e1071)
data(swiss)

## running the estimation experiment
res <- bootEstimates(

Workflow(wfID="svmC10G01",
learner="svm",learner.pars=list(cost=10,gamma=0.1)
),

PredTask(Infant.Mortality ~ .,swiss),
EstimationTask("mse",method=Bootstrap(type=".632",nReps=50))
)

http://arxiv.org/abs/1412.0436
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## Check a summary of the results
summary(res)

## End(Not run)

Bootstrap-class Class "Bootstrap"

Description

This class of objects contains the information describing a bootstrap experiment, i.e. its settings.

Objects from the Class

Objects can be created by calls of the form Bootstrap(...) providing the values for the class
slots. The objects contain information on the type of boostrap, the number of repetitions, the ran-
dom number generator seed and optionally the concrete data splits to use on each iteration of the
boostrap experiment. Note that most of the times you will not supply these data splits as the boost-
rap routines in this infra-structure will take care of building them. Still, this allows you to replicate
some experiment carried out with specific train/test splits.

Slots

type: Object of class character indicating the type of boostrap estimates to use: "e0" (default) or
".632".

nReps: Object of class numeric indicating the number of repetitions of the bootstrap experiment
(defaulting to 200).

seed: Object of class numeric with the random number generator seed (defaulting to 1234).

dataSplits: Object of class list containing the data splits to use on each bootstrap repetition.
Each element should be a list with two components: test and train, on this order. Each of
these is a vector with the row ids to use as test and train sets of each repetition of the bootstrap
experiment.

Extends

Class EstCommon, directly. Class EstimationMethod, directly.

Methods

show signature(object = "Bootstrap"): method used to show the contents of a Bootstrap
object.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>
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References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

MonteCarlo, LOOCV, CV, Holdout, EstimationMethod, EstimationTask

Examples

showClass("Bootstrap")

s <- Bootstrap(type=".632",nReps=400)
s

## Small example illustrating the format of user supplied data splits
s2 <- Bootstrap(dataSplits=list(list(test=sample(1:150,50),train=sample(1:150,50)),

list(test=sample(1:150,50),train=sample(1:150,50)),
list(test=sample(1:150,50),train=sample(1:150,50))
))

s2
s2@dataSplits

CDdiagram.BD CD diagrams for the post-hoc Boferroni-Dunn test

Description

This function obtains a Critical Difference (CD) diagram for the post-hoc Bonferroni-Dunn test
along the lines defined by Demsar (2006). These diagrams provide an interesting visualization
of the statistical significance of the observed paired differences between a set of workflows and a
selected baseline wrokflow. They allow us to compare a set of alternative workflows against this
baseline and answer the question whether the differences are statisticall y significant.

Usage

CDdiagram.BD(r, metric = names(r)[1])

Arguments

r A list resulting from a call to pairedComparisons

metric The metric for which the CD diagram will be obtained (defaults to the first
metric of the comparison).

http://arxiv.org/abs/1412.0436
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Details

Critical Difference (CD) diagrams are interesting sucint visualizations of the results of a Bonferroni-
Dunn post-hoc test that is designed to check the statistical significance between the differences in
average rank of a set of workflows against a baseline workflow, on a set of predictive tasks.

In the resulting graph each workflow is represented by a colored line. The X axis where the lines
end represents the average rank position of the respective workflow across all tasks. The null hy-
pothesis is that the average rank of a baseline workflow does not differ with statistical significance
(at some confidence level defined in the call to pairedComparisons that creates the object used to
obtain these graphs) from the average ranks of a set of alternative workflows. An horizontal line
connects the baseline workflow with the alternative workflows for which we cannot reject this hy-
pothesis. This means that only the alternative workflows that are not connect with the baseline can
be considered as having an average rank that is different from the one of the baseline with statistical
significance. To help spotting these differences the name of the baseline workflow is shown in bold,
and the names of the alternative workflows whose difference is significant are shown in italics.

Value

Nothing, the graph is draw on the current device.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Demsar, J. (2006) Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Ma-
chine Learning Research, 7, 1-30.

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

CDdiagram.Nemenyi, CDdiagram.BD, signifDiffs, metricNames, performanceEstimation, topPerformers,
topPerformer, rankWorkflows, metricsSummary, ComparisonResults

Examples

## Not run:
## Estimating MSE for 3 variants of both
## regression trees and SVMs, on two data sets, using one repetition
## of 10-fold CV
library(e1071)
data(iris)
data(Satellite,package="mlbench")
data(LetterRecognition,package="mlbench")

## running the estimation experiment
res <- performanceEstimation(

http://arxiv.org/abs/1412.0436
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c(PredTask(Species ~ .,iris),
PredTask(classes ~ .,Satellite,"sat"),
PredTask(lettr ~ .,LetterRecognition,"letter")),

workflowVariants(learner="svm",
learner.pars=list(cost=1:4,gamma=c(0.1,0.01))),

EstimationTask(metrics=c("err","acc"),method=CV()))

## checking the top performers
topPerformers(res)

## now let us assume that we will choose "svm.v2" as our baseline
## carry out the paired comparisons
pres <- pairedComparisons(res,"svm.v2")

## obtaining a CD diagram comparing all workflows against
## the baseline (defined in the previous call to pairedComparisons)
CDdiagram.BD(pres,metric="err")

## End(Not run)

CDdiagram.Nemenyi CD diagrams for the post-hoc Nemenyi test

Description

This function obtains a Critical Difference (CD) diagram for the post-hoc Nemenyi test in the lines
defined by Demsar (2006). These diagrams provide an interesting visualization of the statistical
significance of the observed paired differences between a set of workflows on a set of predictive
tasks. They allow us to compare all workflows against each other on these set of tasks and check
the results of all these paired comparisons.

Usage

CDdiagram.Nemenyi(r, metric = names(r)[1])

Arguments

r A list resulting from a call to pairedComparisons

metric The metric for which the CD diagram will be obtained (defaults to the first
metric of the comparison).

Details

Critical Difference (CD) diagrams are interesting sucint visualizations of the results of a Nemenyi
post-hoc test that is designed to check the statistical significance between the differences in average
rank of a set of workflows on a set of predictive tasks.
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In the resulting graph each workflow is represented by a colored line. The X axis where the lines
end represents the average rank position of the respective workflow across all tasks. The null hy-
pothesis is that the average ranks of each pair of workflows to not differ with statistical significance
(at some confidence level defined in the call to pairedComparisons that creates the object used
to obtain these graphs). Horizontal lines connect the lines of the workflows for which we cannot
exclude the hypothesis that their average ranks is equal. Any pair of workflows whose lines are
not connected with an horizontal line can be seen as having an average rank that is different with
statistical significance. On top of the graph an horizontal line is shown with the required differ-
ence between the average ranks (known as the critical difference) for two pair of workflows to be
considered significantly different.

Value

Nothing, the graph is draw on the current device.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Demsar, J. (2006) Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Ma-
chine Learning Research, 7, 1-30.

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

CDdiagram.Nemenyi, CDdiagram.BD, signifDiffs, performanceEstimation, metricNames, topPerformers,
topPerformer, rankWorkflows, metricsSummary, ComparisonResults

Examples

## Not run:
## Estimating MSE for 3 variants of both
## regression trees and SVMs, on two data sets, using one repetition
## of 10-fold CV
library(e1071)
data(iris)
data(Satellite,package="mlbench")
data(LetterRecognition,package="mlbench")

## running the estimation experiment
res <- performanceEstimation(

c(PredTask(Species ~ .,iris),
PredTask(classes ~ .,Satellite,"sat"),
PredTask(lettr ~ .,LetterRecognition,"letter")),

workflowVariants(learner="svm",
learner.pars=list(cost=1:4,gamma=c(0.1,0.01))),

EstimationTask(metrics=c("err","acc"),method=CV()))

http://arxiv.org/abs/1412.0436
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## checking the top performers
topPerformers(res)

## now let us assume that we will choose "svm.v2" as our baseline
## carry out the paired comparisons
pres <- pairedComparisons(res,"svm.v2")

## obtaining a CD diagram comparing all workflows against
## each other
CDdiagram.Nemenyi(pres,metric="err")

## End(Not run)

classificationMetrics Calculate some standard classification evaluation metrics of predic-
tive performance

Description

This function is able to calculate a series of classification evaluation statistics given two vectors: one
with the true target variable values, and the other with the predicted target variable values. Some of
the metrics may require additional information to be given (see Details section).

Usage

classificationMetrics(trues,preds,
metrics=NULL,
benMtrx=NULL,
allCls=unique(c(levels(as.factor(trues)),levels(as.factor(preds)))),
posClass=allCls[1],
beta=1)

Arguments

trues A vector or factor with the true values of the target variable.

preds A vector or factor with the predicted values of the target variable.

metrics A vector with the names of the evaluation statistics to calculate (see Details
section). If none is indicated (default) it will calculate all available metrics.

benMtrx An optional cost/benefit matrix with numeric values representing the benefits
(positive values) and costs (negative values) for all combinations of predicted
and true values of the nominal target variable of the task. In this context, the
matrix should have the dimensions C x C, where C is the number of possible
class values of the classification task. Benefits (positive values) should be on the
diagonal of the matrix (situations where the true and predicted values are equal,
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i.e. the model predicted the correct class and thus should be rewarded for that),
whilst costs (negative values) should be on all positions outside of the diagonal
of the matrix (situations where the predicted value is different from the true
class value and thus the model should incur on a cost for this wrong prediction).
The function assumes the rows of the matrix are the predicted values while the
columns are the true class values.

allCls An optional vector with the possible values of the nominal target variable, i.e. a
vector with the classes of the problem. The default of this parameter is to infer
these values from the given vector of true and predicted values values. However,
if these are small vectors (e.g. you are evaluating your model on a small test set),
it may happen that not all possible class values occur in this vector and this will
potentially create problems in the sub-sequent calculations. Moreover, even if
the vector is not small, for highly unbalanced classification tasks, this problem
may still occur. In these contexts, it is safer to specifically indicate the possible
class values through this parameter.

posClass An optional string with the name of the class (a value of the target nominal
variable) that should be considered the "positive" class. This is used typically
on two class problems where one of the classes is more relevant than the other
(the positive class). It will default to the first value of the vector of possible
classes (allCls).

beta An optional number for the value of the Beta parameter in the calulation of the
F-measure (defaults to 1 that corresponds to giving equal relevance to precision
and recall in the calculation of the F score).

Details

In the following description of the currently available metrics we denote the vector of true target
variable values as t, the vector of predictions by p, while n denotes the size of these two vectors,
i.e. the number of test cases. Furthermore we will denote the number of classes (different values of
the target nominal variable) as C. For problems with only two classes, where one is considered the
"positive" class we will use some extra notation, namely: TP = #p == + & t == + ; FP = #p == + &
t == - ; TN = #p == - & t == -; FN = #p == - & t == + ; P = #t == + ; N = #t == -; Finally, for some
descriptions we will use the concept of confusion matrix (CM). This is a C x C square matrix where
entry CM[i,j] contains the number of times (for a certain test set) some model predicted class i for
a true class value of j, i.e. rows of this matrix represent predicted values and columns true values.
We will also refer to cost/benefit matrices (or utility matrices) that have the same structure (squared
C x C) where entry CB[i,j] represents the cost/benefit of predicting a class i for a true class of j.

The currently available classification performance metrics are:

"acc": sum(I(t_i == p_i))/n, where I() is an indicator function given 1 if its argument is true and 0
otherwise. Note that "acc" is a value in the interval [0,1], 1 corresponding to all predictions being
correct.

"err": the error rate, calculated as 1 - "acc"

"totU": this is a metric that takes into consideration not only the fact that the predictions are correct
or not, but also the costs or benefits of these predictions. As mentioned above it assumes that
the user provides a fully specified cost/benefit matrix though parameter benMtrx, with benefits
corresponding to correct predictions, i.e. where t_i == p_i, while costs correspond to erroneous
predictions. These matrices are C x C square matrices, where C is the number of possible values
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of the nominal target variable (i.e. the number of classes). The entry benMtrx[x, y] represents the
utility (a cost if x != y) of the model predicting x for a true value of y. The diagonal of these matrices
corresponds to the correct predictions (t_i == p_i) and should have positive values (benefits). The
positions outside of the diagonal correspond to prediction errors and should have negative values
(costs). The "totU" measures the total Utility (sum of the costs and benefits) of the predictions of
a classification model. It is calculated as sum(CB[p_i,t_j] * CM[p_i,t_j) where CB is a cost/benefit
matrix and CM is a confusion matrix.

"fpr": false positives rate, is a metric applicable to two classes tasks that measures the proportion of
times the model forecasted a positive class when it should not and it is given by FP/N

"fnr": false negatives rate, is a metric applicable to two classes tasks that measures the proportion
of times the model forecasted a negative class when it should not, and it is given by FN/P

"tpr": true positives rate, is a metric applicable to two classes tasks that measures the proportion of
times the model forecasted a positive class for the positive test cases, and it is given by TP/P

"tnr": true negatives rate, is a metric applicable to two classes tasks that measures the proportion of
times the model forecasted a negative class for the negative test cases, and it is given by TN/N

"rec": recall, it is equal to the true positive rate ("tpr")

"sens": sensitivity, it is equal to the true positive rate ("tpr")

"spec": specificity, it is equal to the true negative rate ("tnr")

"prec": precision, it is a metric applicable to two classes tasks that measures the proportion of times
the model forecasted a positive class and it was correct, and it is given by TP/(TP+FP)

"ppv": predicted positive value, it is equal to the precision ("prec")

"fdr": false discovery rate, it is a metric applicable to two classes tasks that is given by FP/(TP+FP)

"npv": negative predicted value, it is a metric applicable to two classes tasks that is given by
TN/(TN+FN)

"for": false omission rate, it is a metric applicable to two classes tasks that is given by FN/(TN+FN)

"plr": positive likelihood ratio, it is a metric applicable to two classes tasks that is given by "tpr"/"fpr"

"nlr": negative likelihood ratio, it is a metric applicable to two classes tasks that is given by
"fnr"/"tnr"

"dor": diagnostic odds ratio, it is a metric applicable to two classes tasks that is given by "plr"/"nlr"

"rpp": rate of positive predictions, it is a metric applicable to two classes tasks that measures the
proportion of times the model forecasted a positive class, and it is given by (TP+FP)/N

"lift": lift, it is a metric applicable to two classes tasks and it is given by TP/P/(TP+FP) or equiva-
lently TP/(P*TP+P*FP)

"F": the F-nmeasure, it is a metric applicable to two classes tasks that considers both the values of
precision and recall weighed by a parameter Beta (defaults to 1 corresponding to equal weights to
both), and it is given by (1+Beta^2)*("prec" * "rec") / ( (Beta^2 * "prec") + "rec")

"microF": micro-averaged F-measure, it is equal to accuracy ("acc")

"macroF": macro-averaged F-measure, it is the average of the F-measure scores calculated by mak-
ing the positive class each of the possible class values in turn

"macroRec": macro-averaged recall, it is the average recall by making the positive class each of the
possible class values in turn

"macroPrec": macro-averaged precision, it is the average precision by making the positive class
each of the possible class values in turn
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Value

A named vector with the calculated statistics.

Note

1. In case you require "totU" to be calculated you must supply a cost/benefit matrix through param-
eter benMtrx.

2. If not all possible class values are present in the vector of true values in parameter trues, you
should provide a vector with all the possible class values in parameter allCls.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

regressionMetrics

Examples

## Not run:
library(DMwR)
## Calculating several statistics of a classification tree on the Iris data
data(iris)
idx <- sample(1:nrow(iris),100)
train <- iris[idx,]
test <- iris[-idx,]
tree <- rpartXse(Species ~ .,train)
preds <- predict(tree,test,type='class')
## Calculate the error rate
classificationMetrics(test$Species,preds)
## Calculate the all possible error metrics
classificationMetrics(test$Species,preds)
## Now trying calculating the utility of the predictions
cbM <- matrix(c(10,-20,-20,-20,20,-10,-20,-10,20),3,3)
classificationMetrics(test$Species,preds,"totU",cbM)

## End(Not run)

http://arxiv.org/abs/1412.0436
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ComparisonResults-class

Class "ComparisonResults"

Description

This is the main class that holds the results of performance estimation experiments involving several
alternative workflows being applied and compared to several predictive tasks. For each workflow
and task, a set of predictive performance metrics are estimated using some methodology and the
results of this process are stored in these objets.

Objects from the Class

Objects can be created by calls of the form ComparisonResults(...). These object are essentially
a list of lists of objects of class EstimationResults. The top level is named list with has as
many components as there are tasks. For each task there will be a named sub-list containing as
many components as there are alternative workflows. Each of these components will contain and
object of class EstimationResults with the estimation results for the particular workflow / task
combination.

Methods

plot signature(x = "ComparisonResults", y = "missing"): plots the results of the experiments.
It can result in an over-cluttered graph if too many workflows/tasks/evaluation metrics - use
the subset method (see below) to overcome this.

show signature(object = "ComparisonResults"): shows the contents of an object in a proper
way

subset signature(x = "ComparisonResults"): can be used to obtain a smaller ComparisonRe-
sults object containing only a subset of the information of the provided object. This method
also accepts the arguments "tasks", "workflows" and "metrics". All are vectors of numbers
or names that can be used to subset the original object. They default to all values of each
dimension. See "methods?subset" for further details.

summary signature(object = "ComparisonResults"): provides a summary of the performance
estimation experiment.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

performanceEstimation, pairedComparisons, rankWorkflows, topPerformers, metricsSummary,
mergeEstimationRes

http://arxiv.org/abs/1412.0436
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Examples

showClass("ComparisonResults")
## Not run:
## Estimating MAE, MSE, RMSE and MAPE for 3 variants of both
## regression trees and SVMs, on two data sets, using one repetition
## of 10-fold CV
library(e1071)
library(DMwR)
data(swiss)
data(mtcars)

## running the estimation experiment
res <- performanceEstimation(

c(PredTask(Infant.Mortality ~ .,swiss),PredTask(mpg ~ ., mtcars)),
c(workflowVariants(learner="svm",

learner.pars=list(cost=c(1,10),gamma=c(0.01,0.5))),
workflowVariants(learner="rpartXse",

learner.pars=list(se=c(0,0.5,1)))
),
EstimationTask(metrics=c("mae","mse","rmse","mape"),method=CV())
)

## Check a summary of the results
summary(res)

topPerformers(res)

summary(subset(res,metrics="mse"))
summary(subset(res,metrics="mse",partial=FALSE))
summary(subset(res,workflows="v1"))

## End(Not run)

CV-class Class "CV"

Description

This class of objects contains the information describing a cross validation experiment, i.e. its
settings.

Objects from the Class

Objects can be created by calls of the form CV(...) providing the values for the class slots. These
objects include information on the number of repetitions of the cross validation (CV) experiment,
the number of folds, the random number generator seed, whether the sampling should or not be
stratified and optionally, the concrete data splits to use on each repetition and iteration of the CV
experiment. Note that most of the times you will not supply these data splits as the CV routines in
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this infra-structure will take care of building them. Still, this allows you to replicate some experi-
ment carried out with specific train/test splits.

Slots

nReps: Object of class numeric indicating the number of repetitions of the N folds CV experiment
(defaulting to 1).

nFolds: Object of class numeric with the number of folds on each CV experiment (defaulting to
10).

strat: Object of class logical indicating whether the sampling should or not be stratified (de-
faulting to FALSE).

seed: Object of class numeric with the random number generator seed (defaulting to 1234).

dataSplits: Object of class list containing the data splits to use on each repetition of a k-folds
CV experiment (defaulting to NULL). This list should contain nReps x nFolds elements. Each
element should be a vector with the row ids of the test set of the respective iteration. For
instance, on a 3 x 10-fold CV experiment the 10th element should contain the ids of the test
cases of the 10th fold of the first repetition and the 11th element the ids of the test cases on the
1st fold of the 2nd repetition. On all these iterations the training set will be formed by the ids
not appearing in the test set.

Extends

Class EstCommon, directly. Class EstimationMethod, directly.

Methods

show signature(object = "CV"): method used to show the contents of a CV object.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

MonteCarlo, LOOCV, Bootstrap, Holdout, EstimationMethod, EstimationTask

Examples

showClass("CV")

## the defaults (1 x 10-fold CV)
s <- CV()

## stratified 2 x 5-fold CV

http://arxiv.org/abs/1412.0436
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s1 <- CV(nReps=2,nFolds=5,strat=TRUE)

## Small example illustrating the format of user supplied data splits.
## This could be a 3-fold CV process of a data set with 30 cases
s2 <- CV(dataSplits=list(1:10,11:20,21:30))
s2

cvEstimates Performance estimation using cross validation

Description

This function obtains cross validation estimates of performance metrics for a given predictive task
and method to solve it (i.e. a workflow). The function is general in the sense that the workflow
function that the user provides as the solution to the task can implement or call whatever modeling
technique the user wants.

The function implements N x K-fold cross validation (CV) estimation. Different settings con-
cerning this methodology are available through the argument estTask (check the help page of
EstimationTask and CV).

Please note that most of the times you will not call this function directly (though there is nothing
wrong in doing it) but instead you will use the function performanceEstimation, that allows you
to carry out performance estimation for multiple workflows on multiple tasks, using the estimation
method you want (e.g. cross validation). Still, when you simply want to have the CV estimate of
one workflow on one task, you may prefer to use this function directly.

Usage

cvEstimates(wf,task,estTask,cluster)

Arguments

wf an object of the class Workflow representing the modeling approach to be eval-
uated on a certain task.

task an object of the class PredTask defining the prediction task for which we want
estimates.

estTask an object of the class EstimationTask indicating the metrics to be estimated
and the cross validation settings to use.

cluster an optional parameter that can either be TRUE or a cluster. In case of TRUE
the function will run in parallel and will internally setup the parallel back-end
(defaulting to using half of the cores in your local machine). You may also setup
outside your parallel back-end (c.f. makeCluster) and then pass the resulting
cluster object to this function using this parameter. In case no value is provided
for this parameter the function will run sequentially.
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Details

The idea of this function is to carry out a cross validation experiment with the goal of obtaining
reliable estimates of the predictive performance of a certain approach to a predictive task. This
approach (denoted here as a workflow) will be evaluated on the given predictive task using some
user-selected metrics, and this function will provide k-fold cross validation estimates of the true
values of these evaluation metrics. k-Fold cross validation estimates are obtained by randomly
partitioning the given data set into k equal size sub-sets. Then a learn+test process is repeated k
times. At each iteration one of the k partitions is left aside as test set and the model is obtained with
a training set formed by the remaining k-1 partitions. The process is repeated leaving each time one
of the k partitions aside as test set. In the end the average of the k scores obtained on each iteration
is the cross validation estimate.

Parallel execution of the estimation experiment is only recommended for minimally large data sets
otherwise you may actually increase the computation time due to communication costs between the
processes.

Value

The result of the function is an object of class EstimationResults.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

CV, Workflow, standardWF, PredTask, EstimationTask, performanceEstimation, hldEstimates,
bootEstimates, loocvEstimates, mcEstimates, EstimationResults

Examples

## Not run:

## Estimating the mean squared error of svm on the swiss data,
## using two repetitions of 10-fold CV
library(e1071)
data(swiss)

## Now the evaluation
eval.res <- cvEstimates(

Workflow(wf="standardWF", wfID="mySVMtrial",
learner="svm", learner.pars=list(cost=10,gamma=0.1)
),

PredTask(Infant.Mortality ~ ., swiss),
EstimationTask(metrics="mse",method=CV(nReps=2,nFolds=10))

)

http://arxiv.org/abs/1412.0436
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## Check a summary of the results
summary(eval.res)

## An example with a user-defined workflow function implementing a
## simple approach using linear regression models but also containing
## some data-preprocessing and well as results post-processing.
myLM <- function(form,train,test,k=10,.outModel=FALSE) {

require(DMwR)
## fill-in NAs on both the train and test sets
ntr <- knnImputation(train,k)
nts <- knnImputation(test,k,distData=train)
## obtain a linear regression model and simplify it
md <- lm(form,ntr)
md <- step(md)
## get the model predictions
p <- predict(md,nts)
## post-process the predictions (this is an example assuming the target
## variable is always positive so we change negative predictions into 0)
p <- ifelse(p < 0,0,p)
## now get the final return object
res <- list(trues=responseValues(form,nts), preds=p)
if (.outModel) res <- c(res,list(model=m))
res

}

## Now for the CV estimation
data(algae,package="DMwR")
eval.res2 <- cvEstimates(

Workflow(wf="myLM",k=5),
PredTask(a1 ~ ., algae[,1:12],"alga1"),
EstimationTask("mse",method=CV()))

## Check a summary of the results
summary(eval.res2)

##
## Parallel execution example
##
## Comparing the time of sequential and parallel execution
## using half of the cores of the local machine
##
data(Satellite,package="mlbench")
library(e1071)
system.time({p <- cvEstimates(Workflow(learner="svm"),

PredTask(classes ~ .,Satellite),
EstimationTask("err",Boot(nReps=10)),
cluster=TRUE)})[3]

system.time({np <- cvEstimates(Workflow(learner="svm"),
PredTask(classes ~ .,Satellite),
EstimationTask("err",Boot(nReps=10)))})[3]
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## End(Not run)

EstCommon-class Class "EstCommon"

Description

An auxiliar class defining slots common to all experimental settings classes.

Objects from the Class

Objects can be created by calls of the form new("EstCommon", ...).

Slots

seed: Object of class "numeric"

dataSplits: Object of class "OptMatrix"

Methods

No methods defined with class "EstCommon" in the signature.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

CV, MonteCarlo, LOOCV, Bootstrap, Holdout, EstimationMethod, EstimationTask

Examples

showClass("EstCommon")

http://arxiv.org/abs/1412.0436
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EstimationMethod-class

Class "EstimationMethod"

Description

This is a class union formed by the classes CvSettings, McSettings, HldSettings, LoocvSettings and
BootSettings

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "EstimationMethod" in the signature.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

CV, MonteCarlo, LOOCV, Holdout, Bootstrap, EstimationTask

Examples

showClass("EstimationMethod")

EstimationResults-class

Class "EstimationResults"

Description

This is the class of the objects storing the results of estimating the performance of a workflow on a
predictive task using some estimation method.

http://arxiv.org/abs/1412.0436
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Objects from the Class

Objects can be created by calls of the form EstimationResults(...) providing the values for the
class slots. The objects contain information on the predictive task, the workflow, the estimation
task, the metric scores and optionally also information on results obtained at each iteration of the
estimation process.

Slots

task: Object of class PredTask

workflow: Object of class Workflow

estTask: Object belonging to class EstimationTask

iterationsScores: Object of class matrix

iterationsInfo: Object of class list

Methods

plot signature(x = "EstimationResults", y = "missing"): method used to visualize the re-
sults of the estimation process.

show signature(object = "EstimationResults"): shows the contents of an object in a proper
way

summary signature(object = "EstimationResults"): method used to obtain a summary of
the results of the estimation process.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

EstimationMethod, EstimationTask, PredTask, Workflow, performanceEstimation

Examples

showClass("EstimationResults")

## Not run:
library(e1071)
data(swiss)

## Estimating the MAE and NMSE of an SVM on the swiss task
eval.res <- cvEstimates(

Workflow(learner="svm",learner.pars=list(cost=10,gamma=0.1)),
PredTask(Infant.Mortality ~ .,swiss),

http://arxiv.org/abs/1412.0436
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EstimationTask(metrics=c("mae","nmse"),method=CV(nReps=2))
)

## Check a summary of the results
summary(eval.res)

## End(Not run)

estimationSummary Obtain a set of descriptive statistics of the scores of a workflow on a
task

Description

This function provides a set of descriptive statistics for each evaluation metric that is estimated on
a performance estimation comparison. These statistics are obtained for a particular workflow, and
for one of the prediction tasks involved in the experiment.

Usage

estimationSummary(results,workflow,task)

Arguments

results This is a ComparisonResults object (type "class?ComparisonResults" for de-
tails) that contains the results of a performance estimation experiment obtained
through the performanceEstimation() function.

workflow A string with the ID of a workflow (it can also be an integer).

task A string with the ID of a task (it can also be an integer).

Value

The function returns a matrix with the rows representing summary statistics of the scores obtained
by the model on the different iterations, and the columns representing the evaluation statistics esti-
mated in the experiment.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

getScores, performanceEstimation

http://arxiv.org/abs/1412.0436
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Examples

## Not run:
## Estimating MSE for 3 variants of both
## regression trees and SVMs, on two data sets, using one repetition
## of 10-fold CV
library(e1071)
data(swiss)

## running the estimation experiment
res <- performanceEstimation(

PredTask(Infant.Mortality ~ .,swiss),
workflowVariants(learner="svm",

learner.pars=list(cost=c(1,10),gamma=c(0.01,0.5))),
EstimationTask("mse",method=CV(nReps=2,nFolds=5))
)

## Get the summary of the estimations of svm.v2 on swiss
estimationSummary(res,"svm.v2","swiss.Infant.Mortality")

## End(Not run)

EstimationTask-class Class "EstimationTask"

Description

This class of objects contains the information describing an estimation task.

Details

In case you are providing your own user-defined evaluator functions (through parameters evaluator
anbd evaluator.pars) you need to follow some protocol in defining these functions so that the
package may correctly call them during the execution of the estimation experiments. This proto-
col depends on the output of the workflows you plan to evaluate with your use-defined function.
Standard workflows (standardWF or timeseriesWF) will return at least a vector named trues with
the true values of the test cases and the vector named preds with the respective predicted values
(in this order). This means that your evaluator function should assume that it will be called with
these two vectors as the first two arguments. However, if you are not using the standard work-
flows, you have more flexibility. In effect, user-defined workflows return whatever the author wants
them to return (unless they are going to be evaluated using either classificationMetrics or
regressionMetrics, that require the vectors of true and predicted values). This means that in the
most flexible case where you have your own user-defined workflow function and your user-defined
evaluator function, you can use whatever parameters you want. The only thing you need to worry is
to be aware that your user-defined evaluator function will be called with whatever your user-defined
workflow has returned as result of its execution. Your user-defined evaluator function should calcu-
late whatever metrics are indicated through the parameter stats that is a vector of strings. In case
the slot trainReq is TRUE then the user-defined evaluator function should also have a parameter
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named train.y that will "receive" the values of the target variable on the training set. The remain-
ing parameters of the user-defined function can be freely defined by you and their values will be
specified through the contents of the evaluator.pars list.

Objects from the Class

Objects can be created by calls of the form EstimationTask(...) providing the values for the class
slots. These objects contain information on the metrics to be estimated, as well as on the estimation
method to use to obtain the estimates. Moreover, in case you want to use metrics not currently
implemented by this package you can also provide the name of a function (and its parameters) that
will be called to calculate these metrics.

Slots

metrics: An optional vector of objects of class character containing the names of the metrics to
be estimated. These can be any of the metrics provided by the functions classificationMetrics
and regressionMetrics or "trTime", "tsTime" or "totTime" for training, testing and total
time, respectively. You may also provide the name of any other metrics, but in that case you
need to use the slots evaluator and evaluator.pars to indicate the function to be use to
calculate them. If you do not supply the name of any metric, all metrics of the used evaluator
function will be calculated.

method: Object of class EstimationMethod containing the estimation method and its settings to
be used to obtain the estimates of the metrics (defaulting to CV()).

evaluator: An optional object of class character containing the name of a function to be used to
calculate the specified metrics. It will default to either classificationMetrics or regressionMetrics
depending on the type of prediction task.

evaluator.pars: An optional list containing the parameters to be passed to the function calculat-
ing the metrics.

trainReq: An optional logical value indicating whether the metrics to be calculated require that
the training data is supplied (defaulting to FALSE). Note that if the user selects any of the
metrics "nmse", "nmae" or "theil" this will be set to TRUE.

Methods

show signature(object = "EstimationTask"): method used to show the contents of a EstimationTask
object.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

MonteCarlo, CV, LOOCV, Bootstrap, Holdout, EstimationMethod

http://arxiv.org/abs/1412.0436
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Examples

showClass("EstimationTask")

## Estimating Mean Squared Error using 10-fold cross validation
et <- EstimationTask(metrics="mse")
et

## Estimating Accuracy and Total Time (train+test times) using 3
## repetitions of holdout with 20% of the cases used for testing.
EstimationTask(metrics=c("acc","totTime"),method=Holdout(nReps=3,hldSz=0.2))

## An example with a user-defined metric: the average differences between true
## predicted values raised to a certain power.

## First we define the function that calculates this metric. It
## needs to have 'trues' and 'preds' as the first two arguments if we
## want it to be usable by standard workflows
powErr <- function(trues,preds,metrics,pow=3) {

if (metrics != "pow.err") stop("Unable to calculate that metric!")
c(pow.err = mean((trues-preds)^pow))

}

## Now the estimation task (10-fold cv in this example)
EstimationTask(metrics="pow.err", method=CV(),

evaluator="powErr", evaluator.pars=list(pow=4))

getIterationsInfo Obtaining the information returned by a workflow when applied to
a task, on a particular iteration of the estimation process or on all
iterations

Description

In the estimation process workflows are applied many times to different train+test samples of each
task. We call these repetitions, the iterations of the estimation process. On each of these executions
of the workflows, they typically return not only the predictions for the test set but also some extra
information, in the form of a list. This function allows you to inspect this extra information

Usage

getIterationsInfo(obj, workflow = 1, task = 1, rep, fold, it)

Arguments

obj A ComparisonResults object

workflow A string with the ID of a workflow (it can also be an integer). It defaults to 1
(the first workflow of the estimation experiment)

task A string with the ID of a task (it can also be an integer). It defaults to 1 (the first
task of the estimation experiment)
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rep An integer representing the repetition, which allows you to identify the iteration
you want to inspect. You need to specify either this argument together with the
argument fold, or only the argument it

fold An integer representing the fold, which allows you to identify the iteration you
want to inspect. You need to specify either this argument together with the
argument rep, or only the argument it

it An integer representing the iteration you want to inspect. Alternatively, for cross
validation experiments, you may instead specify the repetition id and the fold id
(arguments rep and fold, respectivily)

Value

A list with the information returned by the workflow on the selected iteration or a list containing as
many components as there are iterations (i.e. a list of lists) in case you have opted for obtaining all
iterations results

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

getIterationsPreds, getScores, performanceEstimation

Examples

## Not run:
## Estimating MSE for 3 variants of both
## regression trees and SVMs, on two data sets, using one repetition
## of 10-fold CV
library(e1071)
data(swiss)

## running the estimation experiment
res <- performanceEstimation(

PredTask(Infant.Mortality ~ .,swiss),
workflowVariants(learner="svm",

learner.pars=list(cost=c(1,10),gamma=c(0.01,0.5))),
EstimationTask("mse",method=CV(nReps=2,nFolds=5))
)

## Get the iterations scores of svm.v2 on swiss
getIterationsInfo(res,"svm.v2","swiss.Infant.Mortality",rep=1,fold=2)
## this would get the same
getIterationsInfo(res,"svm.v2","swiss.Infant.Mortality",it=2)

http://arxiv.org/abs/1412.0436
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getIterationsInfo(res,"svm.v2","swiss.Infant.Mortality",rep=2,fold=3)
## this would get the same
getIterationsInfo(res,"svm.v2","swiss.Infant.Mortality",it=8)

## Get the results of all iterations
getIterationsInfo(res,"svm.v1","swiss.Infant.Mortality")

## End(Not run)

getIterationsPreds Obtaining the predictions returned by a workflow when applied to a
task, on a particular iteration of the estimation process, or on all iter-
ations

Description

In the estimation process workflows are applied many times to different train+test samples of each
task. We call these repetitions, the iterations of the estimation process. On each of these executions
of the workflows they must return the predictions for the test set. This function allows you to obtain
these predictions. The function also allows you to obtain the predictions on all iterations, instead of
a single iteration.

Usage

getIterationsPreds(obj, workflow = 1, task = 1, rep, fold, it, predComp="preds")

Arguments

obj A ComparisonResults object

workflow A string with the ID of a workflow (it can also be an integer). It defaults to 1
(the first workflow of the estimation experiment)

task A string with the ID of a task (it can also be an integer). It defaults to 1 (the first
task of the estimation experiment)

rep An integer representing the repetition, which allows you to identify the iteration
you want to inspect. You need to specify either this argument together with the
argument fold, or only the argument it

fold An integer representing the fold, which allows you to identify the iteration you
want to inspect. You need to specify either this argument together with the
argument rep, or only the argument it

it An integer representing the iteration you want to inspect. Alternatively, for cross
validation experiments, you may instead specify the repetition id and the fold id
(arguments rep and fold, respectivily)

predComp A string with the name of the component of the list returned by the workflow
that contains the predictions (it defaults to "preds")
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Value

The result is either a vector of the predictions of a particular iteration or a matrix with the predictions
on all iterations

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

getScores, getIterationsInfo, performanceEstimation

Examples

## Not run:
## Estimating MSE for 3 variants of both
## regression trees and SVMs, on two data sets, using one repetition
## of 10-fold CV
library(e1071)
data(swiss)

## running the estimation experiment
res <- performanceEstimation(

PredTask(Infant.Mortality ~ .,swiss),
workflowVariants(learner="svm",

learner.pars=list(cost=c(1,10),gamma=c(0.01,0.5))),
EstimationTask("mse",method=CV(nReps=2,nFolds=5))
)

## Get the iterations scores of svm.v2 on swiss
getIterationsPreds(res,"svm.v2","swiss.Infant.Mortality",rep=1,fold=2)
## this would get the same
getIterationsPreds(res,"svm.v2","swiss.Infant.Mortality",it=2)

getIterationsPreds(res,"svm.v2","swiss.Infant.Mortality",rep=2,fold=3)
## this would get the same
getIterationsPreds(res,"svm.v2","swiss.Infant.Mortality",it=8)

## Get the results of all iterations
getIterationsPreds(res,"svm.v1","swiss.Infant.Mortality")

## End(Not run)

http://arxiv.org/abs/1412.0436
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getScores Obtaining the metric scores on the different iterations for a workflow
/ task combination

Description

With this function we can obtain the different metric scores obtained by a given workflow on a given
task, in the different iterations of a performance estimation experiment.

Usage

getScores(results, workflow, task)

Arguments

results A ComparisonResults object

workflow A string with the ID of a workflow

task A string with the ID of a predictive task

Value

A matrix with as many rows as there are iterations and as many columns as there are metrics being
estimated in the experiment

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

taskNames,workflowNames,metricNames,estimationSummary

Examples

## Not run:
## Estimating MSE for 3 variants of both
## regression trees and SVMs, on two data sets, using one repetition
## of 10-fold CV
library(e1071)
library(DMwR)
data(swiss)
data(mtcars)

http://arxiv.org/abs/1412.0436
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## running the estimation experiment
res <- performanceEstimation(

c(PredTask(Infant.Mortality ~ .,swiss),PredTask(mpg ~ ., mtcars)),
c(workflowVariants(learner="svm",

learner.pars=list(cost=c(1,10),gamma=c(0.01,0.5))),
workflowVariants(learner="rpartXse",

learner.pars=list(se=c(0,0.5,1)))
),
EstimationTask("mse")
)

## Get the iterations scores of svm.v2 on swiss
getScores(res,"svm.v2","swiss.Infant.Mortality")

## End(Not run)

getWorkflow Obtain the workflow object corresponding to an ID

Description

This function can be used to obtain the Workflow object corresponding to an ID used in a perfor-
mance estimation experiment. This allows you for instance to check the full details of the workflow
corresponding to that ID (e.g. the function implementing the workflow, the parameters and their
values, etc.)

Usage

getWorkflow(var, obj)

Arguments

var The string with the workflow ID

obj A ComparisonResults object with the data from a performance estimation ex-
periment

Value

A Workflow object

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

http://arxiv.org/abs/1412.0436
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See Also

Workflow, runWorkflow, performanceEstimation

Examples

## Not run:
## Estimating MSE for 3 variants of both
## regression trees and SVMs, on two data sets, using one repetition
## of 10-fold CV
library(e1071)
library(DMwR)
data(swiss)
data(mtcars)

## running the estimation experiment
res <- performanceEstimation(

c(PredTask(Infant.Mortality ~ .,swiss),PredTask(mpg ~ ., mtcars)),
c(workflowVariants(learner="svm",

learner.pars=list(cost=c(1,10),gamma=c(0.01,0.5))),
workflowVariants(learner="rpartXse",

learner.pars=list(se=c(0,0.5,1)))
),
EstimationTask("mse",method=CV(nReps=2,nFolds=5))
)

## Get the workflow corresponding to the ID svm.v2
getWorkflow("svm.v2",res)

## End(Not run)

hldEstimates Performance estimation using holdout and random resampling

Description

This function obtains hold-out and random sub-sampling estimates of performance metrics for a
given predictive task and method to solve it (i.e. a workflow). The function is general in the sense
that the workflow function that the user provides as the solution to the task, can implement or call
whatever modeling technique the user wants.

The function implements hold-out and random sub-sampling (repeated hold-out) estimation. Dif-
ferent settings concerning this methodology are available through the argument estTask (check the
help page of Holdout).

Please note that most of the times you will not call this function directly (though there is nothing
wrong in doing it) but instead you will use the function performanceEstimation, that allows you to
carry out performance estimation for multiple workflows on multiple tasks, using some estimation
method you want (e.g. hold-out). Still, when you simply want to have the hold-out estimate of one
workflow on one task, you may prefer to use this function directly.
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Usage

hldEstimates(wf,task,estTask,cluster)

Arguments

wf an object of the class Workflow representing the modeling approach to be eval-
uated on a certain task.

task an object of the class PredTask representing the prediction task to be used in
the evaluation.

estTask an object of the class EstimationTask representing the hold-out settings to use.

cluster an optional parameter that can either be TRUE or a cluster. In case of TRUE
the function will run in parallel and will internally setup the parallel back-end
(defaulting to using half of the cores in your local machine). You may also setup
outside your parallel back-end (c.f. makeCluster) and then pass the resulting
cluster object to this function using this parameter. In case no value is provided
for this parameter the function will run sequentially.

Details

The idea of this function is to carry out a hold-out experiment with the goal of obtaining reliable
estimates of the predictive performance of a certain approach to a predictive task. This approach
(denoted here as a workflow) will be evaluated on the given predictive task using some user-selected
metrics, and this function will provide hold-out or random sub-sampling estimates of the true value
of these evaluation metrics. Hold-out estimates are obtained by randomly partition the given data
set into train and test sets. The training set is used to obtain a model for the predictive task, which
is then tested by making predictions for the test set. This random split of the given data can be
repeated several times leading to what is usually known as random sub-sampling estimates. In the
end the average of the scores over the several repetitions (if using pure hold-out this is only one) are
the hold-out estimates of the selected metrics.

Parallel execution of the estimation experiment is only recommended for minimally large data sets
otherwise you may actually increase the computation time due to communication costs between the
processes.

Value

The result of the function is an object of class EstimationResults.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

http://arxiv.org/abs/1412.0436
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See Also

Holdout, Workflow, standardWF, PredTask, EstimationTask, performanceEstimation, cvEstimates,
bootEstimates, loocvEstimates, mcEstimates, EstimationResults

Examples

## Not run:

## Estimating the mean absolute error and the normalized mean squared
## error of rpart on the swiss data, using 70%-30% hold-out
library(e1071)
data(swiss)

## Now the evaluation
eval.res <- hldEstimates(

Workflow(wf="standardWF",wfID="svmApproach",
learner="svm",learner.pars=list(cost=10,gamma=0.1)

),
PredTask(Infant.Mortality ~ ., swiss),
EstimationTask(metrics=c("mae","nmse"),

method=Holdout(nReps=5,hldSz=0.3))
)

## Check a summary of the results
summary(eval.res)

## An example with a user-defined workflow function implementing a
## simple approach using linear regression models but also containing
## some data-preprocessing and well as results post-processing.
myLM <- function(form,train,test,k=10,.outModel=FALSE) {

require(DMwR)
## fill-in NAs on both the train and test sets
ntr <- knnImputation(train,k)
nts <- knnImputation(test,k,distData=train)
## obtain a linear regression model and simplify it
md <- lm(form,ntr)
md <- step(md)
## get the model predictions
p <- predict(md,nts)
## post-process the predictions (this is an example assuming the target
## variable is always positive so we change negative predictions into 0)
p <- ifelse(p < 0,0,p)
## now get the final return object
res <- list(trues=responseValues(form,nts), preds=p)
if (.outModel) res <- c(res,list(model=m))
res

}

## Now for the Holdout estimation
data(algae,package="DMwR")
eval.res2 <- hldEstimates(

Workflow(wf="myLM",k=5),
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PredTask(a1 ~ ., algae[,1:12],"alga1"),
EstimationTask("mse",method=Holdout(nReps=5)))

## Check a summary of the results
summary(eval.res2)

## End(Not run)

Holdout-class Class "Holdout"

Description

This class of objects contains the information describing a hold out experiment, i.e. its settings.

Objects from the Class

Objects can be created by calls of the form Holdout(...) providing the values for the class slots.
The objects contain information on the number of repetitions of the hold out experiment, the per-
centage of the given data to set as hold out test set, the random number generator seed, information
on whether stratified sampling should be used and optionally the concrete data splits to use on each
iteration of the holdout experiment. Note that most of the times you will not supply these data splits
as the holdout routines in this infra-structure will take care of building them. Still, this allows you
to replicate some experiment carried out with specific train/test splits.

Slots

nReps: Object of class numeric indicating the number of repetitions of the N folds CV experiment
(defaulting to 1).

hldSz: Object of class numeric with the percentage (a number between 0 and 1) of cases to use as
hold out (defaulting to 0.3).

strat: Object of class logical indicating whether the sampling should or not be stratefied (de-
faulting to FALSE).

seed: Object of class numeric with the random number generator seed (defaulting to 1234).

dataSplits: Object of class list containing the data splits to use on each repetition of a nReps
Holdout experiment (defaulting to NULL). This list should contain nReps elements. Each ele-
ment should be a vector with the row ids of the test set of the respective iteration. On all these
iterations the training set will be formed by the ids not appearing in the test set.

Extends

Class EstCommon, directly. Class EstimationMethod, directly.

Methods

show signature(object = "Holdout"): method used to show the contents of a Holdout object.
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Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

MonteCarlo, LOOCV, Bootstrap, CV, EstimationMethod, EstimationTask

Examples

showClass("Holdout")

## 10 repetitions of a holdout experiment leaving on each repetition
## 20% of the cases randomly chosen as test set (the holdout)
h1 <- Holdout(nReps=10,hldSz=0.2,strat=TRUE)
h1

## Small example illustrating the format of user supplied data splits
## in this case for 3 repetitions of a Holdout process where each test
## set has 10 cases
h2 <- Holdout(dataSplits=list(1:10,11:20,21:30))
h2

is.classification Check if a certain predictive task is a classification problem

Description

This function tests if a task defined by a formula over a data set is a classification task, which will
be the case if the target variable is nominal.

Usage

is.classification(task)

Arguments

task An object of class PredTask

Value

A logical value

http://arxiv.org/abs/1412.0436
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Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

is.regression

Examples

data(iris)
tsk <- PredTask(Species ~ .,iris)
if (is.classification(tsk)) cat("This is a classification task.\n")

is.regression Check if a certain predictive task is a regression problem

Description

This function tests if a task defined by a formula over a data set is a regression task, which will be
the case if the target variable is numeric.

Usage

is.regression(task)

Arguments

task An object of class PredTask

Value

A logical value

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

http://arxiv.org/abs/1412.0436
http://arxiv.org/abs/1412.0436
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See Also

is.classification

Examples

data(iris)
tsk <- PredTask(Species ~ .,iris)
if (!is.regression(tsk)) cat("This is not a regression task!\n")

knnImp Fill in NA values with the values of the nearest neighbours

Description

Function that fills in all NA values using the k Nearest Neighbours of each case with NA values. It
uses the median/most frequent value within the neighbours to fill in the NAs.

Usage

knnImp(data, k = 10, scale = TRUE, distData = NULL)

Arguments

data A data frame with the data set

k The number of nearest neighbours to use (defaults to 10)

scale Boolean setting if the data should be scale before finding the nearest neighbours
(defaults to TRUE)

distData Optionally you may sepecify here a data frame containing the data set that
should be used to find the neighbours. This is usefull when filling in NA values
on a test set, where you should use only information from the training set. This
defaults to NULL, which means that the neighbours will be searched in data

Details

This function uses the k-nearest neighbours to fill in the unknown (NA) values in a data set. For
each case with any NA value it will search for its k most similar cases and use the values of these
cases to fill in the unknowns.

The function will use either the median (in case of numeric variables) or the most frequent value (in
case of factors), of the neighbours to fill in the NAs.

Value

A data frame without NA values

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>
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References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

na.omit

Examples

## Not run:
data(algae,package="DMwR")
cleanAlgae <- knnImp(algae)
summary(cleanAlgae)

## End(Not run)

LOOCV-class Class "LOOCV"

Description

This class of objects contains the information describing a leave one out cross validation estimation
experiment, i.e. its settings.

Objects from the Class

Objects can be created by calls of the form LOOCV(...) providing the values for the class slots.
These objects contain infoprmation on the random number generator seed and also whether the
execution of the experiments should be verbose.

Slots

seed: Object of class numeric with the random number generator seed (defaulting to 1234).

dataSplits: Object of class list containing the data splits to use on each repetition of a leave
one out cross validation experiment (defaulting to NULL). This list should contain as many
elements as there are cases in the task data set. Each element should be the row id of the test
case of the respective iteration. On all these iterations the training set will be formed by the
remaining ids.

Extends

Class EstCommon, directly. Class EstimationMethod, directly.

Methods

show signature(object = "LOOCV"): method used to show the contents of a LOOCV object.

http://arxiv.org/abs/1412.0436
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Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

MonteCarlo, CV, Bootstrap, Holdout, EstimationMethod, EstimationTask

Examples

showClass("LOOCV")

s <- LOOCV()
s

loocvEstimates Performance estimation using Leave One Out Cross Validation

Description

This function obtains leave one out cross validation estimates of performance metrics for a given
predictive task and method to solve it (i.e. a workflow). The function is general in the sense that the
workflow function that the user provides as the solution to the task, can implement or call whatever
modeling technique the user wants.

The function implements leave one out cross validation estimation. Different settings concering this
methodology are available through the argument estTask (check the help page of LOOCV).

Please note that most of the times you will not call this function directly, though there is nothing
wrong in doing it, but instead you will use the function performanceEstimation, that allows you
to carry out performance estimation of multiple workflows on multiple tasks, using some estimation
method like for instance cross validation. Still, when you simply want to have the leave one out
cross validation estimate of one workflow on one task, you may use this function directly.

Usage

loocvEstimates(wf,task,estTask,verbose=FALSE,cluster)

http://arxiv.org/abs/1412.0436
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Arguments

wf an object of the class Workflow representing the modeling approach to be eval-
uated on a certain task.

task an object of the class PredTask representing the prediction task to be used in
the evaluation.

estTask an object of the class EstimationTask indicating the metrics to be estimated
and the leave one out cross validation settings to use.

verbose A boolean value controlling the level of output of the function execution, de-
faulting to FALSE

cluster an optional parameter that can either be TRUE or a cluster. In case of TRUE
the function will run in parallel and will internally setup the parallel back-end
(defaulting to using half of the cores in your local machine). You may also setup
outside your parallel back-end (c.f. makeCluster) and then pass the resulting
cluster object to this function using this parameter. In case no value is provided
for this parameter the function will run sequentially.

Details

The idea of this function is to carry out a leave one out cross validation experiment with the goal of
obtaining reliable estimates of the predictive performance of a certain approach to a predictive task.
This approach (denoted here as a workflow) will be evaluated on the given predictive task using
some user-selected metrics, and this function will provide leave one out cross validation estimates
of the true value of these evaluation metrics. Leave one out cross validation estimates are obtained
as the average of N iterations, where N is the size of the given data sample. On each of these
iterations one of the cases in the data sample is left out as test set and the worflow is applied to the
remaining N-1 cases. The process is repeated for all cases, i.e. N times. This estimation is similar
to k-fold cross validation where k equals to N. The resulting estimates are obtained by averaging
over the N iteration scores.

Parallel execution of the estimation experiment is only recommended for minimally large data sets
otherwise you may actually increase the computation time due to communication costs between the
processes.

Value

The result of the function is an object of class EstimationResults.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

http://arxiv.org/abs/1412.0436
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See Also

LOOCV, Workflow, standardWF, PredTask, EstimationTask, performanceEstimation, hldEstimates,
bootEstimates, cvEstimates, mcEstimates, EstimationResults

Examples

## Not run:

## Estimating the error rate of an SVM on the iris data set using
## leave one out cross validation
library(e1071)
data(iris)

## Now the evaluation
eval.res <- loocvEstimates(

Workflow(wfID="svmTrial",
learner="svm",learner.pars=list(cost=10,gamma=0.1)
),

PredTask(Species ~ ., iris),
EstimationTask("err",method=LOOCV()))

## Check a summary of the results
summary(eval.res)

## End(Not run)

mcEstimates Performance estimation for time series prediction tasks using Monte
Carlo

Description

This function performs a Monte Carlo experiment with the goal of estimating the performance of a
given approach (a workflow) on a certain time series prediction task. The function is general in the
sense that the workflow function that the user provides as the solution to the task, can implement or
call whatever modeling technique the user wants.

The function implements Monte Carlo estimation and different settings concerning this methodol-
ogy are available through the argument estTask (check the help page of MonteCarlo).

Please note that most of the times you will not call this function directly, though there is nothing
wrong in doing it, but instead you will use the function performanceEstimation, that allows you to
carry out performance estimation for multiple workflows on multiple tasks, using some estimation
method. Still, when you simply want to have the Monte Carlo estimates for one workflow on one
task, you may prefer to use this function directly.

Usage

mcEstimates(wf, task, estTask, verbose = TRUE,cluster)
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Arguments

wf an object of the class Workflow representing the modeling approach to be eval-
uated on a certain task.

task an object of the class PredTask representing the prediction task to be used in
the evaluation.

estTask an object of the class EstimationTask indicating the metrics to be estimated
and the Monte Carlo settings to use.

verbose A boolean value controlling the level of output of the function execution, de-
faulting to TRUE

cluster an optional parameter that can either be TRUE or a cluster. In case of TRUE
the function will run in parallel and will internally setup the parallel back-end
(defaulting to using half of the cores in your local machine). You may also setup
outside your parallel back-end (c.f. makeCluster) and then pass the resulting
cluster object to this function using this parameter. In case no value is provided
for this parameter the function will run sequentially.

Details

This function provides reliable estimates of a set of evaluation statistics through a Monte Carlo
experiment. The user supplies a worflow function and a data set of a time series forecasting task,
together with the estimation task. This task should include both the metrics to be estimated as well
as the settings of the estimation methodology (MOnte Carlo) that include, among others, the size of
the training (TR) and testing sets (TS) and the number of repetitions (R) of the train+test cycle. The
function randomly selects a set of R numbers in the time interval [TR+1,NDS-TS+1], where NDS
is the size of the full data set. For each of these R numbers the previous TR observations of the data
set are used to learn a model and the subsequent TS observations for testing it and obtaining the
wanted evaluation metrics. The resulting R estimates of the evaluation metrics are averaged at the
end of this process resulting in the Monte Carlo estimates of these metrics.

This function is targeted at obtaining estimates of performance for time series prediction problems.
The reason is that the experimental repetitions ensure that the order of the rows in the original data
set are never swaped, as these rows are assumed to be ordered by time. This is an important issue
to ensure that a prediction model is never tested on past observations of the time series.

For each train+test iteration the provided workflow function is called and should return the predic-
tions of the workflow for the given test period. To carry out this train+test iteration the user may use
the standard time series workflow that is provided (check the help page of timeseriesWF), or may
provide hers/his own workflow that should return a list as result. See the Examples section below
for an example of these functions. Further examples are given in the package vignette.

Parallel execution of the estimation experiment is only recommended for minimally large data sets
otherwise you may actually increase the computation time due to communication costs between the
processes.

Value

The result of the function is an object of class EstimationResults.
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Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

MonteCarlo, Workflow, timeseriesWF, PredTask, EstimationTask, performanceEstimation,
hldEstimates, loocvEstimates, cvEstimates, bootEstimates, EstimationResults

Examples

## The following is a small illustrative example using the quotes of the
## SP500 index. This example estimates the performance of a random
## forest on a illustrative example of trying to forecast the future
## variations of the adijusted close prices of the SP500 using a few
## predictors. The random forest is evaluated on 4 repetitions of a
## monte carlo experiment where 30% of the data is used for training
## the model that is then used to make predictions for the next 20%,
## using a sliding window approach with a relearn step of 10 periods
## (check the help page of the timeseriesWF() function to understand
## these and other settings)

## Not run:
library(quantmod)
library(randomForest)

getSymbols('^GSPC',from='2008-01-01',to='2012-12-31')
data.model <- specifyModel(Next(100*Delt(Ad(GSPC))) ~ Delt(Ad(GSPC),k=1:10)+Delt(Vo(GSPC),k=1:3))
data <- as.data.frame(modelData(data.model))
colnames(data)[1] <- 'PercVarClose'

spExp <- mcEstimates(Workflow("timeseriesWF",wfID="rfTrial",
type="slide",relearn.step=10,
learner='randomForest'),

PredTask(PercVarClose ~ .,data,"sp500"),
EstimationTask(metrics=c("mse","theil"),

method=MonteCarlo(nReps=4,szTrain=.3,szTest=.2)))

summary(spExp)

## End(Not run)

http://arxiv.org/abs/1412.0436


mergeEstimationRes 45

mergeEstimationRes Merging several ComparisonResults class objects

Description

This function can be used to join several objects of class ComparisonResults into a single object.
The merge is carried out assuming that there is something in common between the objects (e.g. all
use the same workflows on different tasks), and that the user specifies which property should be
used for the merging process.

Usage

mergeEstimationRes(..., by = "tasks")

Arguments

... The ComparisonResults class object names separated by commas

by The dimension of the ComparisonResults class objects that should be used for
the merge. All objects should have the same values on the remaining dimen-
sions of an estimation experiment. For instance, if you merge by "tasks" (the
default) it means that the objects being merged should include estimation results
on the same set of workflows on the same set of metrics, using the same esti-
mation method and settings. The only thing that changes between the objects in
this example is the set of tasks. Possible values of this argument are: "tasks",
"workflows" and "metrics".

Details

The objects of class ComparisonResults (type "class?ComparisonResults" for details) contain sev-
eral information on the results of an estimation expriment for several workflows on several predic-
tive tasks. Sometimes, when you are trying too many workflows on too many tasks, it is convinient
to run these variants on different calls to the function performanceEstimation. After all calls are
completed we frequently want to have all results on a single object. This is the objective of the cur-
rent function: allow you to merge these different ComparisonResults objects into a single one. For
being mergeable the objects need to have things in common otherwise it makes no sense to merge
them. For instance, we could split our very large experiment by calling performanceEstimation
with different tasks, although the rest (the workflows and the estimation task) stays the same. See
the Examples section for some illustrations.

Value

The result of this function is a ComparisonResults object.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>
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References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

performanceEstimation, ComparisonResults, subset

Examples

## Not run:
## Run some experiments with the swiss data and two different
## prediction models
data(swiss)

exp1 <- performanceEstimation(
PredTask(Infant.Mortality ~ .,swiss),
workflowVariants(learner="svm",

learner.pars=list(cost=c(1,10),gamma=c(0.01,0.5))),
EstimationTask("mse")
)

exp2 <- performanceEstimation(
PredTask(Infant.Mortality ~ .,swiss),
Workflow(learner="lm"),
EstimationTask("mse")
)

## joining the two experiments by workflows
all <- mergeEstimationRes(exp1,exp2,by="workflows")
topPerformers(all) # check the best results

## now an example by adding new metrics
exp3 <- performanceEstimation(

PredTask(Infant.Mortality ~ .,swiss),
Workflow(learner="lm"),
EstimationTask(metrics=c("mae","totTime"))
)

allLM <- mergeEstimationRes(exp2,exp3,by="metrics")
topPerformers(allLM)

## End(Not run)

metricNames The evaluation metrics estimated in an experiment

http://arxiv.org/abs/1412.0436
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Description

This function can be used to get a vector with the names of the evaluation metrics that were used in
a performance estimation experiment.

Usage

metricNames(o)

Arguments

o An object of class ComparisonResults

Value

A vector of strings (the names of the metrics)

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

ComparisonResults, performanceEstimation, taskNames, workflowNames

Examples

## Not run:
## Estimating MSE for 3 variants of both
## regression trees and SVMs, on two data sets, using one repetition
## of 10-fold CV
library(e1071)
library(DMwR)
data(swiss)
data(mtcars)

## running the estimation experiment
res <- performanceEstimation(

c(PredTask(Infant.Mortality ~ .,swiss),PredTask(mpg ~ ., mtcars)),
c(workflowVariants(learner="svm",

learner.pars=list(cost=c(1,10),gamma=c(0.01,0.5))),
workflowVariants(learner="rpartXse",

learner.pars=list(se=c(0,0.5,1)))
),
EstimationTask("mse")
)

http://arxiv.org/abs/1412.0436
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## the names of the metrics that were estimated in the above experiment
metricNames(res)

## End(Not run)

metricsSummary Obtains a summary of the individual metric scores obtained by each
workflow on a set of tasks.

Description

Given a ComparisonResults object this function provides a summary statistic (defaulting to the
mean) of the individual scores obtained on a each evaluation metric over all repetitions carried out
in the estimation process. This is done for all workflows and tasks of the performance estimation
experiment. The function can be handy to obtain things like for instance the maximum score ob-
tained by each workflow on a particular metric over all repetitions of the experimental process. It
is also usefull (using its defaults) as a way to quickly getting the estimated values for each metric
obtained by each alternative workflow and task (see the Examples section).

Usage

metricsSummary(compRes, summary = "mean", ...)

Arguments

compRes An object of class ComparisonResults with the results of a performance esti-
mation experiment.

summary A string with the name of the function that you want to use to obtain the sum-
mary (defaults to "mean"). This function will be applied to the set of individual
scores of each workflow on each task and for all metrics.

... Further arguments passed to the selected summary function.

Value

The result of this function is a named list with as many components as there are predictive tasks.
For each task (component), we get a matrix with as many columns as there are workflows and as
many rows as there are evaluation metrics. The values on this matrix are the results of applying the
selected summary function to the metric scores on each iteration of the estimation process.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

http://arxiv.org/abs/1412.0436
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See Also

performanceEstimation, topPerformers, topPerformer, rankWorkflows

Examples

## Not run:
## Estimating several evaluation metrics on different variants of a
## regression tree and of a SVM, on two data sets, using one repetition
## of 10-fold CV

data(swiss)
data(mtcars)
library(e1071)

## run the experimental comparison
results <- performanceEstimation(

c(PredTask(Infant.Mortality ~ ., swiss),
PredTask(mpg ~ ., mtcars)),

c(workflowVariants(learner='svm',
learner.pars=list(cost=c(1,5),gamma=c(0.1,0.01))
)

),
EstimationTask(metrics=c("mse","mae"),method=CV(nReps=2,nFolds=5))

)

## Get the minium value of each metric on all iterations of the CV
## process.
metricsSummary(results,summary="min")

## Get a summary table for each task with the estimated scores for each
## metric by each workflow
metricsSummary(results)

## End(Not run)

MonteCarlo-class Class "MonteCarlo"

Description

This class of objects contains the information describing a monte carlo experiment, i.e. its settings.

Objects from the Class

Objects can be created by calls of the form MonteCarlo(...) providing the values for the class
slots. These objects contain information on the number of repetitions of the experiments, the data
used for training the models on each repetition, the data used for testing these models, the random
number generator seed and optionally the concrete data splits to use on each iteration of the Monte
Carlo experiment. Note that most of the times you will not supply these data splits as the Monte
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Carlo routines in this infra-structure will take care of building them. Still, this allows you to replicate
some experiment carried out with specific train/test splits.

Slots

nReps: Object of class numeric indicating the number of repetitions of the Monte Carlo experiment
(defaulting to 10).

szTrain: Object of class numeric. If it is a value between 0 and 1 it is interpreted as a percentage
of the available data set, otherwise it is interpreted as the number of cases to use. It defaults to
0.25.

szTest: Object of class numeric If it is a value between 0 and 1 it is interpreted as a percentage of
the available data set, otherwise it is interpreted as the number of cases to use. It defaults to
0.25.

seed: Object of class numeric with the random number generator seed (defaulting to 1234).

dataSplits: Object of class list containing the data splits to use on each Monte Carlo repetition.
Each element should be a list with two components: test and train, on this order. Each of
these is a vector with the row ids to use as test and train sets of each repetition of the Monte
Carlo experiment.

Extends

Class EstCommon, directly. Class EstimationMethod, directly.

Methods

show signature(object = "MonteCarlo"): method used to show the contents of a MonteCarlo
object.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

LOOCV, CV, Bootstrap, Holdout, EstimationMethod, EstimationTask

Examples

showClass("MonteCarlo")

m1 <- MonteCarlo(nReps=10,szTrain=0.3,szTest=0.2)
m1

## Small example illustrating the format of user supplied data splits

http://arxiv.org/abs/1412.0436
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## it assumes that the source data is formed by 10 cases and that each
## model is trainined with 3 cases and tested in the following case.
## This is obviously a unrealistic example in terms of size but
## illustrates the format of the data splits
m2 <- MonteCarlo(dataSplits=list(list(test=sample(1:150,50),train=sample(1:150,50)),

list(test=sample(1:150,50),train=sample(1:150,50)),
list(test=sample(1:150,50),train=sample(1:150,50))
))

m2

pairedComparisons Statistical hypothesis testing on the observed paired differences in es-
timated performance.

Description

This function analyses the statistical significance of the paired comparisons between the estimated
performance scores of a set of workflows. When you run the performanceEstimation() function
to compare a set of workflows over a set of problems you obtain estimates of their performances
across these problems. This function implements several statistical tests that can be used to test
several hypothesis concerning the observed differences in performance between the workflows on
the tasks.

Usage

pairedComparisons(obj,baseline,
maxs=rep(FALSE,length(metricNames(obj))),
p.value=0.05)

Arguments

obj An object of class ComparisonResults that contains the results of a perfor-
mance estimation experiment.

baseline Several tests involve the hypothesis that a certain workflow is significantly dif-
ferent from a set of other alternatives. This argument allows you to specify the
name of this baseline workflow. If you omit this name the function will default
to the name of the workflow that has the lower average rank position across all
tasks, for each estimation metric.

maxs A vector of booleans with as many elements are there are metrics estimated in
the experiment. A TRUE value means the respective metric is to be maximized,
while a FALSE means minimization. Defaults to all FALSE values, i.e. all metrics
are to be minimized.

p.value A p value to be used in the calculations that involve using values from statistical
tables (defaults to 0.05).
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Details

The performanceEstimation function allows you to obtain estimates of the expected value of a
series of performance metrics for a set of alternative workflows and a set of predictive tasks. After
running this type of experiments we frequently want to check if there is any statistical significance
between the estimated performance of the different workflows. The current function allows you to
carry out this type of checks.

The function will only run on experiments containing more than one workflow as paired compar-
isons do not make sense with one single alternative workflow. Having more than one workflow we
can distinguish two situations: i) comparing the performance of two workflows; or ii) comparisons
among multiple workflows. The recommendations for checking the statistical significance of the
difference between the performance of the alternative workflows varies within these two setups (see
Demsar (2006) for recommendations).

The current function implements several statistical tests that can be used for different hypothesis
tests. Namely, it obtains the results of paired t tests and paired Wilcoxon Signed Rank tests for
situations where you are comparing the performance of two workflows, with the latter being rec-
ommended given the typical overlap among the training sets that does not ensure independence
among the scores of the different iterations. For the setup of multiple workflows on multiple tasks
the function also calculates the Friedman test and the post-hoc Nemenyi and Bonferroni-Dunn tests,
according to the procedures described in Demsar (2006). The combination Friedman test followed
by the post-hoc Nemenyi test is recommended when you want to carry out paired comparisons be-
tween all alternative workflows on the set of tasks to check for which differences are significant.
The combination Friedman test followed by the post-hoc Bonferroni-Dunn test is recommended
when you want to compare a set of alternative workflows against a baseline workflow. For both of
these two paths we provide an implementation of the diagrams (CD diagrams) described in Demsar
(2006) through the functions CDdiagram.BD and CDdiagram.Nemenyi.

The performanceEstimation function ensures that all compared workflows are run on exactly the
same train+test partitions on all repetitions and for all predictive tasks. In this context, we can use
pairwise statistical significance tests.

Value

The result of this function is the information from performing all these statistical tests. This infor-
mation is returned as a list with as many components as there are estimated metrics. For each metric
a list with several components describing the results of these tests is provided.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Demsar, J. (2006) Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Ma-
chine Learning Research, 7, 1-30.

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

http://arxiv.org/abs/1412.0436
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See Also

CDdiagram.Nemenyi, CDdiagram.BD, signifDiffs, performanceEstimation, topPerformers,
topPerformer, rankWorkflows, metricsSummary, ComparisonResults

Examples

## Not run:
## Estimating MSE for 3 variants of both
## regression trees and SVMs, on two data sets, using one repetition
## of 10-fold CV
library(e1071)
data(iris)
data(Satellite,package="mlbench")
data(LetterRecognition,package="mlbench")

## running the estimation experiment
res <- performanceEstimation(

c(PredTask(Species ~ .,iris),
PredTask(classes ~ .,Satellite,"sat"),
PredTask(lettr ~ .,LetterRecognition,"letter")),

workflowVariants(learner="svm",
learner.pars=list(cost=1:4,gamma=c(0.1,0.01))),

EstimationTask(metrics=c("err","acc"),method=CV()))

## checking the top performers
topPerformers(res)

## now let us assume that we will choose "svm.v2" as our baseline
## carry out the paired comparisons
pres <- pairedComparisons(res,"svm.v2")

## obtaining a CD diagram comparing all others against svm.v2 in terms
## of error rate
CDdiagram.BD(pres,metric="err")

## End(Not run)

performanceEstimation Estimate the predictive performance of modeling alternatives on dif-
ferent predictive tasks

Description

This function can be used to estimate the predictive performance of alternative approaches to a
set of predictive tasks, using different estimation methods. This is a generic function that should
work with any modeling approaches provided a few assumptions are met. The function implements
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different estimation procedures, namely: cross validation, leave one out cross validation, hold-out,
monte carlo simulations and bootstrap.

Usage

performanceEstimation(tasks,workflows,estTask,...)

Arguments

tasks This is a vector of objects of class PredTask, containing the predictive tasks that
will be used in the estimation procedure.

workflows This is a vector of objects of class Workflow, containing the workflows repre-
senting different approaches to the predictive tasks, and whose performance we
want to estimate.

estTask This is an object belonging to class EstimationTask. It is used to specify the
metrics to be estimated and the method to use to obtain these estimates. See
section Details for the possible values.

... Any further parameters that are to be passed to the lower-level functions imple-
menting each individual estimation methodology.

Details

The goal of this function is to allow estimating the perfomance of a set of alternative modelling
approaches on a set of predictive tasks. The estimation can be carried out using different method-
ologies. All alternative approaches (which we will refer to as workflows) will be applied using the
same exact data partitions for each task thus ensuring the possibility of carrying out paired com-
parisons using adequate statistical tests for checking the significance of the observed differences in
performance.

The first parameter of this function is a vector of PredTask objects that define the tasks to use in
the estimation process.

The second argument is a vector of Workflow objects. These can be created in two different ways:
either directly by calling the constructor of this class; or by using the workflowVariants function
that can be used to automatically generate different workflow objects as variants of some base
workflow. Either way there are two types of workflows: user-defined workflows and what we call
"standard" workflows. The later are workflows that people typically follow to solve predictive tasks
and that are already implemented in this package to facilitate the task of the user. These standard
workflows are implemented in functions standardWF and timeseriesWF. When specifying the
vector of workflows if you use (either in the constructor or in the function workflowVariants) the
parameter wf to indicate which workflow you which to use. If you supply a name different from
the two provided standard workflows the function will assume that this is a name of a function you
have created to implement your own workflow (see the Examples section for illustrations). In case
you omit the value of the wf parameter the function assumes you want to use one of the standard
workflows and will try to "guess" which one. Namely, if you provide some value for the parameter
type (either "slide" or "grow"), it will assume that you are addressing a time series task and thus
will set wf to timeseriesWF. In all other cases will set it to standardWF. Summarizing, in terms of
workflows you can use: i) your own user-defined workflows; ii) the standard workflow implemented
by function standardWF; or iii) the standard time series workflow implementd by timeseriesWF.
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Currently, the function allows for 5 different types of estimation methods to be used that are spec-
ified when you indicate the esitmation task. These are different methods for providing reliable
estimates of the true value of the selected evaluation metrics. Both the metrics and the estimation
method are defined through the value provided in argument estTask. The 5 estimation methodolo-
gies are the following:

Cross validation: this type of estimates can be obtained by providing in estTask argument an object
of class EstimationTask with method set to an object of class CV (this is the default). More details
on this type of method can be obtained in the help page of the class CV.

Leave one out cross validation: this type of estimates can be obtained by providing in estTask
argument an object of class EstimationTask with method set to an object of class LOOCV. More
details on this type of method can be obtained in the help page of the class LOOCV.

Hold out: this type of estimates can be obtained by providing in estTask argument an object of
class EstimationTask with method set to an object of class Holdout. More details on this type of
method can be obtained in the help page of the class Holdout.

Monte Carlo: this type of estimates can be obtained by providing in estTask argument an object
of class EstimationTask with method set to an object of class MonteCarlo. More details on this
type of method can be obtained in the help page of the class MonteCarlo.

Bootstrap: this type of estimates can be obtained by providing in estTask argument an object of
class EstimationTask with method set to an object of class Bootstrap. More details on this type
of method can be obtained in the help page of the class Bootstrap.

Value

The result of the function is an object of class ComparisonResults.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

workflowVariants, topPerformers, rankWorkflows, pairedComparisons, CV, LOOCV, Holdout,
MonteCarlo, Bootstrap

Examples

## Not run:
## Estimating MSE for 3 variants of both
## regression trees and SVMs, on two data sets, using one repetition
## of 10-fold CV
library(e1071)
library(DMwR)
data(swiss)
data(mtcars)

http://arxiv.org/abs/1412.0436
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## Estimating MSE using 10-fold CV for 4 variants of a standard workflow
## using an SVM as base learner and 3 variants of a regression tree.
res <- performanceEstimation(

c(PredTask(Infant.Mortality ~ .,swiss),PredTask(mpg ~ ., mtcars)),
c(workflowVariants(learner="svm",

learner.pars=list(cost=c(1,10),gamma=c(0.01,0.5))),
workflowVariants(learner="rpartXse",

learner.pars=list(se=c(0,0.5,1)))
),
EstimationTask(metrics="mse")
)

## Check a summary of the results
summary(res)

## best performers for each metric and task
topPerformers(res)

## Estimating the accuracy of a default SVM on IRIS using 10 repetitions
## of a 80%-20% Holdout
data(iris)
res1 <- performanceEstimation(PredTask(Species ~ .,iris),

Workflow(learner="svm"),
EstimationTask(metrics="acc",method=Holdout(nReps=10,hldSz=0.2)))

summary(res1)

## Now an example with a user-defined workflow
myWF <- function(form,train,test,wL=0.5,...) {

require(rpart,quietly=TRUE)
ml <- lm(form,train)
mr <- rpart(form,train)
pl <- predict(ml,test)
pr <- predict(mr,test)
ps <- wL*pl+(1-wL)*pr
list(trues=responseValues(form,test),preds=ps)

}
resmywf <- performanceEstimation(

PredTask(mpg ~ ., mtcars),
workflowVariants(wf="myWF",wL=seq(0,1,by=0.1)),
EstimationTask(metrics="mae",method=Bootstrap(nReps=50))

)
summary(resmywf)

## End(Not run)

PredTask-class Class "PredTask"
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Description

This is the class of objects that represent a predictive task

Objects from the Class

Objects can be created by calls to the constructor PredTask(...). The constructor requires a
formula and a data frame on the first two arguments. You may also a name for the task through the
parameter taskName of the constructor. Optional parameter type allows you to indicate the type of
task (either "regr", "class" or "ts", for regression, classification and time series tasks, respectively).
If not provided this will be inferred from constructor. Setting the optional parameter copy to TRUE
(defaults to FALSE) will force the constructor to make a copy of the given data frame and store it in
the dataSource slot of the PredTask object.

Slots

formula: Object of class formula containing the formula representing the predictive task.
dataSource: Object of class data.frame, call or name. This will be used to fecth the task data

when necessary. The first of these options will only be used if the user calls the constructor
with copy=TRUE and will result in the source data being copied into the PredTask object.

taskName: Optional object of class character containing the ID of the predictive task
type: Optional object of class character containing the type of the predictive task (it can be

"regr", "class" or "ts").
target: Optional object of class character containing the name of the target variable.

Methods

show signature(object = "PredTask"): method used to show the contents of a PredTask object.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

Workflow, EstimationTask, performanceEstimation

Examples

showClass("PredTask")
data(iris)
PredTask(Species ~ .,iris)
PredTask(Species ~ .,iris[1:20,],"irisSubset")
## after the next example you can safely remove the iris data frame from
## your environment because the data was stored inside the "t" object.
t <- PredTask(Species ~ ., iris,copy=TRUE)

http://arxiv.org/abs/1412.0436
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rankWorkflows Provide a ranking of workflows involved in an estimation process.

Description

Given a ComparisonResults object resulting from a performance estimation experiment, this func-
tion provides a ranking (by default the top 5) of the best workflows involved in the comparison. The
rankings are provided by task and for each evaluation metric.

Usage

rankWorkflows(compRes,top=min(5,length(workflowNames(compRes))),
maxs=rep(FALSE,dim(compRes[[1]][[1]]@iterationsScores)[2]),stat="avg")

Arguments

compRes An object of class ComparisonResults with the results of the performance es-
timation experiment.

top The number of workflows to include in the rankings (defaulting to 5 or the num-
ber of workflows in the experiment if less than 5)

maxs A vector of booleans with as many elements are there are statistics measured in
the experimental comparison. A TRUE value means the respective metric is to be
maximized, while a FALSE means minimization. Defaults to all FALSE values.

stat The statistic to be used to obtain the ranks. The options are the statistics pro-
duced by the function summary applied to objects of class ComparisonResults,
i.e. "avg", "std", "med", "iqr", "min", "max" or "invalid" (defaults to "avg").

Value

The function returns a named list with as many components as there are predictive tasks in the
experiment. For each task you will get another named list, with as many elements as there evaluation
metrics. For each of these components you have a data frame with N lines, where N is the size of
the requested rank. Each line includes the name of the workflow in the respective rank position and
the estimated score it got on that particular task / evaluation metric.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

performanceEstimation, topPerformers, topPerformer, metricsSummary

http://arxiv.org/abs/1412.0436
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Examples

## Not run:
## Estimating several evaluation metrics on different variants of a
## regression tree and of a SVM, on two data sets, using one repetition
## of 10-fold CV

data(swiss)
data(mtcars)
library(e1071)

## run the experimental comparison
results <- performanceEstimation(

c(PredTask(Infant.Mortality ~ ., swiss),
PredTask(mpg ~ ., mtcars)),

c(workflowVariants(learner='svm',
learner.pars=list(cost=c(1,5),gamma=c(0.1,0.01))
)

),
EstimationTask(metrics=c("mse","mae"),method=CV(nReps=2,nFolds=5))

)
## get a ranking of the top workflows for each task and evaluation metric
rankWorkflows(results)
## get a ranking of the top workflows for each task and evaluation
## metric by the median score on all iterations instead of the mean score
rankWorkflows(results, stat="med")

## End(Not run)

regressionMetrics Calculate some standard regression evaluation metrics of predictive
performance

Description

This function is able to calculate a series of regression evaluation statistics given two vectors: one
with the true target variable values, and the other with the predicted target variable values. Some of
the metrics may require additional information to be given (see Details section).

Usage

regressionMetrics(trues, preds, metrics = NULL, train.y = NULL)

Arguments

trues A numeric vector with the true values of the target variable.

preds A numeric vector with the predicted values of the target variable.

metrics A vector with the names of the evaluation statistics to calculate (see Details
section). If none is indicated (default) it will calculate all available metrics of
this function.
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train.y An optional numeric vector with the values of the target variable on the set of
data used to obtain the model whose performance is being tested.

Details

In the following description of the currently available metrics we denote the vector of true target
variable values as t, the vector of predictions by p, while N denotes the size of these two vectors,
i.e. the number of test cases.

The regression evaluation statistics calculated by this function belong to two different groups of
measures: absolute and relative. In terms of absolute error metrics the function includes currently
the following:

"mae": mean absolute error, which is calculated as sum(|t_i - p_i|)/N

"mse": mean squared error, which is calculated as sum( (t_i - p_i)^2 )/N

"rmse": root mean squared error that is calculated as sqrt(mse)

The remaining measures ("mape", "nmse", "nmae" and "theil") are relative measures, the three
later comparing the performance of the model with a baseline. They are unit-less measures with
values always greater than 0. In the case of "nmse", "nmae" and "theil" the values are expected to
be in the interval [0,1] though occasionaly scores can overcome 1, which means that your model
is performing worse than the baseline model. The baseline used in both "nmse" and "nmae" is a
constant model that always predicts the average target variable value, estimated using the values
of this variable on the training data (data used to obtain the model that generated the predictions),
which should be provided in the parameter train.y. The "theil" metric is typically used in time
series tasks and the used baseline is the last observed value of the target variable. The relative error
measure "mape" does not require a baseline. It simply calculates the average percentage difference
between the true values and the predictions.

These measures are calculated as follows:

"mape": sum(|(t_i - p_i) / t_i|)/N

"nmse": sum( (t_i - p_i)^2 ) / sum( (t_i - AVG(Y))^2 ), where AVG(Y) is the average of the values
provided in vector train.y

"nmae": sum(|t_i - p_i|) / sum(|t_i - AVG(Y)|)

"theil": sum( (t_i - p_i)^2 ) / sum( (t_i - t_{i-1})^2 ), where t_{i-1} is the last observed value of the
target variable

The user may also indicate the value "all" in the parameter metrics. In this case all possible metrics
will be calculated. This will only include the "nmse", "nmae" and "theil" metrics if the value of the
train.y parameter is set, otherwise only the other metrics will be returned.

Value

A named vector with the calculated evaluation scores.

Note

In case you require either "nmse", "nmae" or "theil" to be calculated you must supply a vector of
numeric values through the parameter train.y, otherwise the function will return an error message.
These values are required to obtain a fair baseline against which your model predictions will be
compared to.
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Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

classificationMetrics

Examples

## Not run:
## Calculating several statistics of a regression tree on the Swiss data
data(swiss)
idx <- sample(1:nrow(swiss),as.integer(0.7*nrow(swiss)))
train <- swiss[idx,]
test <- swiss[-idx,]
library(rpart)
model <- rpart(Infant.Mortality ~ .,train)
preds <- predict(model,test)
## by default only mse is calculated
regressionMetrics(test[,'Infant.Mortality'],preds)
## calculate mae and rmse
regressionMetrics(test[,'Infant.Mortality'],preds,metrics=c('mae','rmse'))
## calculate all statistics
regressionMetrics(test[,'Infant.Mortality'],preds,train.y=train[,'Infant.Mortality'])

## End(Not run)

responseValues Obtain the target variable values of a prediction task

Description

This function obtains the values in the column whose name is the target variable of a prediction
problem described by a formula.

Usage

responseValues(formula, data, na=NULL)

Arguments

formula A formula describing a prediction problem

data The data frame containing the data of the prediction problem

na A function to handle NAs in the data

http://arxiv.org/abs/1412.0436
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Value

A vector of values

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

Examples

data(iris)
tgt <- responseValues(Species ~ ., iris)
summary(tgt)

results2table Obtains a dplyr data frame table object containing all the results of an
experiment

Description

This function produces a dplyr data frame table object with the information on all iterations of an
experiment. This type of objects may be easier to manipulate in terms of querying these results,
particular for larger experiments involving lots of tasks, workflows and metrics.

Usage

results2table(res)

Arguments

res This is a ComparisonResults object (type "class?ComparisonResults" for de-
tails) that contains the results of a performance estimation experiment obtained
through the performanceEstimation() function.

Value

The function returns a dplyr data frame table object containing all resutls of the experiment. The
object has the columns: Task, Workflow, nrIt, Metric and Score. Each row is one train+test cycle
within the experiment, i.e. contains the score of some metric obtained by some workflow on one
train+test iteration of a task.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

http://arxiv.org/abs/1412.0436
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References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

getScores, performanceEstimation

Examples

## Not run:
## Estimating MSE for 3 variants of both
## regression trees and SVMs, on two data sets, using one repetition
## of 10-fold CV
library(e1071)
data(swiss)

## running the estimation experiment
res <- performanceEstimation(

PredTask(Infant.Mortality ~ .,swiss,"Swiss"),
workflowVariants(learner="svm",

learner.pars=list(cost=c(1,10),gamma=c(0.01,0.5))),
EstimationTask(metrics=c("mse","nmae"),method=CV(nReps=2,nFolds=5))
)

## Obtaining a table with the results
library(dplyr)
tbl <- results2table(res)

## Mean and standard deviation of each workflow per task (only one in
## this example) and metric
group_by(tbl,Task,Workflow,Metric)

summarize_each_(funs(mean,sd),"Score")

## Top 2 workflows in terms of MSE for this task
filter(tbl,Task=="Swiss",Metric=="mse")

group_by(Workflow)
summarize_each_(funs(mean),"Score")

arrange(Score)
slice(1:2)

## End(Not run)

runWorkflow Run a workflow on a predictive task

http://arxiv.org/abs/1412.0436
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Description

This function can be used to apply (run) a workflow.

It receives in the first argument an object of class Workflow and then any other arguments that are
required to run the workflow, which will typically involve at least a formula, a training data set (a
data frame), and a test data set (another data frame).

Usage

runWorkflow(l, ...)

Arguments

l An object of class Workflow

... Further arguments that are required by the workflow function

Value

The execution of a workflow should produce a list as result. If you plan to apply any of the functions
provided in this package to calculate standard performance metrics (classificationMetrics or
regressionMetrics) then your list should contain at least two components: one named trues with
the true values of the target variable in the test set, and the other named preds with the respective
predictions of the workflow.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

Workflow

Examples

## Not run:
## A simple example
data(iris)
w1 <- Workflow("mySolution",par1="gaussian",k=10)
runWorkflow(w1,Species ~ .,iris[1:100,],iris[101:150,])

## End(Not run)

http://arxiv.org/abs/1412.0436
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signifDiffs Obtains a list with the set of paired differences that are statistically
significant according to a p-value threshold

Description

This function receives as main argument the object resulting from a call to the pairedComparisons
function and produces a list with the subset of the paired comparisons using the t test and the
Wilcoxon Signed Rank test that are statistically significant given a certain p value limit.

Usage

signifDiffs(ps, p.limit=0.05,
metrics=names(ps),
tasks=rownames(ps[[1]]$avgScores))

Arguments

ps An object resulting from a call to the pairedComparisons function.

p.limit A number indicating the maximum value of the confidence level (p.value) of the
statistical hypothesis test for a paired comparison to be considered statistically
significant (defaults to 0.05). All paired comparisons with a p value below this
limit will appear in the results of this function.

metrics A vector with the names of the metrics for which we want the results (defaults
to all metrics included in the paired comparison).

tasks A vector with the names of the prediction tasks for which we want the results
(defaults to all tasks included in the paired comparison).

Details

This function produces a list with as many components as the selected metrics (defaulting to all
metrics in the paired comparison). Each of the components is another list with two components: i)
one with the results for the t tests; and ii) the other with the results for the Wilcoxon Signed Rank
test. Each of these two components is an array with 3 dimensions, with the rows representing the
workflows, the columns a set of statistics and the thrid dimension being the task. The first row of
these arrays will contain the baseline workflow against which all others are being compared (by
either the t test or through the Wilcoxon Signed Rank test). The remaining rows will include the
workflows whose comparison against this baseline is statistically significant, i.e. whose p value of
the paired comparison is below the provided p limit.

Value

The result of this function is a list (see the Details section).

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>
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References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

pairedComparisons, performanceEstimation

Examples

## Not run:
## Estimating MSE for 3 variants of both
## regression trees and SVMs, on two data sets, using one repetition
## of 10-fold CV
library(e1071)
data(iris)
data(Satellite,package="mlbench")
data(LetterRecognition,package="mlbench")

## running the estimation experiment
res <- performanceEstimation(

c(PredTask(Species ~ .,iris),
PredTask(classes ~ .,Satellite,"sat"),
PredTask(lettr ~ .,LetterRecognition,"letter")),

workflowVariants(learner="svm",
learner.pars=list(cost=1:4,gamma=c(0.1,0.01))),

EstimationTask(metrics=c("err","acc"),method=CV()))

## now let us assume that we will choose "svm.v2" as our baseline
## carry out the paired comparisons
pres <- pairedComparisons(res,"svm.v2")

## Obtaining the subset of differences that are significant
## with 99% confidence
sds <- signifDiffs(res,p.limit=0.01)

## End(Not run)

smote SMOTE algorithm for unbalanced classification problems

Description

This function handles unbalanced classification problems using the SMOTE method. Namely, it
can generate a new "SMOTEd" data set that addresses the class unbalance problem.

http://arxiv.org/abs/1412.0436
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Usage

smote(form, data, perc.over = 2, k = 5, perc.under = 2)

Arguments

form A formula describing the prediction problem

data A data frame containing the original (unbalanced) data set

perc.over A number that drives the decision of how many extra cases from the minority
class are generated (known as over-sampling).

k A number indicating the number of nearest neighbours that are used to generate
the new examples of the minority class.

perc.under A number that drives the decision of how many extra cases from the majority
classes are selected for each case generated from the minority class (known as
under-sampling)

Details

Unbalanced classification problems cause problems to many learning algorithms. These problems
are characterized by the uneven proportion of cases that are available for each class of the problem.

SMOTE (Chawla et. al. 2002) is a well-known algorithm to fight this problem. The general idea of
this method is to artificially generate new examples of the minority class using the nearest neighbors
of these cases. Furthermore, the majority class examples are also under-sampled, leading to a more
balanced dataset.

The parameters perc.over and perc.under control the amount of over-sampling of the minority
class and under-sampling of the majority classes, respectively. perc.over will tipically be a number
above 1. With this type of values, for each case in the orginal data set belonging to the minority
class, perc.over new examples of that class will be created. If perc.over is a value below 1 than
a single case will be generated for a randomly selected proportion (given by perc.over) of the
cases belonging to the minority class on the original data set. The parameter perc.under controls
the proportion of cases of the majority class that will be randomly selected for the final "balanced"
data set. This proportion is calculated with respect to the number of newly generated minority
class cases. For instance, if 200 new examples were generated for the minority class, a value of
perc.under of 1 will randomly select exactly 200 cases belonging to the majority classes from the
original data set to belong to the final data set. Values above 1 will select more examples from the
majority classes.

The parameter k controls the way the new examples are created. For each currently existing minority
class example X new examples will be created (this is controlled by the parameter perc.over as
mentioned above). These examples will be generated by using the information from the k nearest
neighbours of each example of the minority class. The parameter k controls how many of these
neighbours are used.

Value

The function returns a data frame with the new data set resulting from the application of the SMOTE
algorithm.
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Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote: Synthetic minority
over-sampling technique. Journal of Artificial Intelligence Research, 16:321-357.

Torgo, L. (2010) Data Mining using R: learning with case studies, CRC Press (ISBN: 9781439810187).
http://www.dcc.fc.up.pt/~ltorgo/DataMiningWithR

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

Examples

## A small example with a data set created artificially from the IRIS
## data
data(iris)
data <- iris[, c(1, 2, 5)]
data$Species <- factor(ifelse(data$Species == "setosa","rare","common"))
## checking the class distribution of this artificial data set
table(data$Species)

## now using SMOTE to create a more "balanced problem"
newData <- smote(Species ~ ., data, perc.over = 6,perc.under=1)
table(newData$Species)

## Checking visually the created data
## Not run:
par(mfrow = c(1, 2))
plot(data[, 1], data[, 2], pch = 19 + as.integer(data[, 3]),

main = "Original Data")
plot(newData[, 1], newData[, 2], pch = 19 + as.integer(newData[,3]),

main = "SMOTE'd Data")

## End(Not run)

standardPOST A function for applying post-processing steps to the predictions of a
model

Description

This function implements a series of simple post-processing steps to be applied to the predictions
of a model. It also allows the user to supply hers/his own post-processing functions. The result of
the function is a new version of the predictions of the model (typically a vector or a matrix in the
case of models that predict class probabilities, for instance).

http://www.dcc.fc.up.pt/~ltorgo/DataMiningWithR
http://arxiv.org/abs/1412.0436
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Usage

standardPOST(form, train, test, preds, steps, ...)

Arguments

form A formula specifying the predictive task.

train A data frame containing the training set.

test A data frame containing the test set.

preds The object resulting from the application of a model to the test set to obtain its
predictions (typically a vector or a matrix for probabilistic classifiers)

steps A vector with function names that are to be applied in the sequence they appear
in this vector to the predictions to obtain a new version of these predictions.

... Any further parameters that will be passed to all functions specified in steps

Details

This function is mainly used by both standardWF and timeseriesWF as a means to allow for users
of these two standard workflows to specify some post-processing steps for the predictions of the
models. These are steps one wishes to apply to the predictions to somehow change the outcome of
the prediction stage.

Nevertheless, the function can also be used outside of these standard workflows for obtaining post-
processed versions of the predictions.

The function accepts as post-processing functions both some already implemented functions as well
as any function defined by the user provided these follow some protocol. Namely, these user-defined
post-processing functions should be aware that they will be called with a formula, a training data
frame, a testing data frame and the predictions in the first four arguments. Moreover, any arguments
used in the call to standardPOST will also be forwarded to these user-defined functions. Finally,
these functions should return a new version of the predictions. It is questionable the interest of
supplying both the training and test sets to these functions, on top of the formula and the predic-
tions. However, we have decided to pass them anyway not to precule the usage of any special
post-processing step that requires this information.

The function already contains implementations of the following post-processing steps that can be
used in the steps parameter:

"na2central" - this function fills in any NA predictions into either the median (numeric targets) or
mode (nominal targets) of the target variable on the training set. Note that this is only applicable to
predictions that are vectors of values.

"onlyPos" - in some numeric forecasting tasks the target variable takes only positive values. Never-
theless, some models may insist in forecasting negative values. This function casts these negative
values to zero. Note that this is only applicable to predictions that are vectors of numeric values.

"cast2int" - in some numeric forecasting tasks the target variable takes only values within some
interval. Nevertheless, some models may insist in forecasting values outside of this interval. This
function casts these values into the nearest interval boundary. This function requires that you supply
the limits of this interval through parameters infLim and supLim. Note that this is only applicable
to predictions that are vectors of numeric values.
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"maxutil" - maximize the utility of the predictions (Elkan, 2001) of a classifier. This method is
only applicable to classification tasks and to algorithms that are able to produce as predictions a
vector of class probabilities for each test case, i.e. a matrix of probabilities for a given test set.
The method requires a cost-benefit matrix to be provided through the parameter cb.matrix. For
each test case, and given the probabilities estimated by the classifier and the cost benefit matrix, the
method predicts the classifier that maximizes the utility of the prediction. This approach (Elkan,
2001) is a slight ’evolution’ of the original idea (Breiman et al., 1984) that only considered the costs
of errors and not the benefits of the correct classifications as in the case of cost-benefit matrices we
are using here. The parameter cb.matrix must contain a (square) matrix of dimension NClasses x
NClasses where entry X_i,j corresponds to the cost/benefit of predicting a test case as belonging to
class j when it is of class i. The diagonal of this matrix (correct predicitons) should contain positive
numbers (benefits), whilst numbers outside of the matrix should contain negative numbers (costs of
misclassifications). See the Examples section for an illustration.

Value

An object of the same class as the input parameter preds

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Breiman,L., Friedman,J., Olshen,R. and Stone,C. (1984), Classification and Regression Trees, Wadsworth
and Brooks.

Elkan, C. (2001), The Foundations of Cost-Sensitive Learning. Proceedings of IJCAI’2001.

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

standardPRE, standardWF, timeseriesWF

Examples

## Not run:

######
## Using in the context of an experiment

data(algae,package="DMwR")
library(e1071)

## This will issue several warnings because this implementation of SVMs
## will ignore test cases with NAs in some predictor. Our infra-structure
## issues a warning and fills in these with the prediction of an NA
res <- performanceEstimation(

PredTask(a1 ~ .,algae[,1:12],"alga1"),

http://arxiv.org/abs/1412.0436
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Workflow(learner="svm"),
EstimationTask(metrics="mse")
)

summary(getIterationPreds(res,1,1,it=1))

## one way of overcoming this would be to post-process the NA
## predictions into a statistic of centrality
resN <- performanceEstimation(

PredTask(a1 ~ .,algae[,1:12],"alga1"),
Workflow(learner="svm",post="na2central"),
EstimationTask(metrics="mse")
)

summary(getIterationPreds(resN,1,1,it=1))

## because the SVM also predicts negative values which does not make
## sense in this application (the target are frequencies thus >= 0) we
## could also include some further post-processing to take care of
## negative predictions
resN <- performanceEstimation(

PredTask(a1 ~ .,algae[,1:12],"alga1"),
Workflow(learner="svm",post=c("na2central","onlyPos")),
EstimationTask(metrics="mse")
)

summary(getIterationPreds(resN,1,1,it=1))

######################
## An example with utility maximization learning for the
## BreastCancer data set on package mlbench
##
data(BreastCancer,package="mlbench")

## First lets create the cost-benefit matrix
cb <- matrix(c(1,-10,-100,100),byrow=TRUE,ncol=2)
colnames(cb) <- paste("p",levels(BreastCancer$Class),sep=".")
rownames(cb) <- paste("t",levels(BreastCancer$Class),sep=".")

## This leads to the following cost-benefit matrix
## p.benign p.malignant
## t.benign 1 -10
## t.malignant -100 100

## Now the performance estimation. We are estimating error rate (wrong
## for cost sensitive tasks!) and total utility of the model predictions
## (the right thing to do here!)
library(rpart)

r <- performanceEstimation(
PredTask(Class ~ .,BreastCancer[,-1],"breastCancer"),
c(Workflow(wfID="rpart.cost",

learner="rpart",
post="maxutil",
post.pars=list(cb.matrix=cb)
),
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Workflow(wfID="rpart",
learner="rpart",
predictor.pars=list(type="class")
)

),
EstimationTask(

metrics=c("err","totU"),
evaluator.pars=list(benMtrx=cb,posClass="malignant"),
method=CV(strat=TRUE)))

## Analysing the results
rankWorkflows(r,maxs=c(FALSE,TRUE))

## Visualizing them
plot(r)

## End(Not run)

standardPRE A function for applying data pre-processing steps

Description

This function implements a series of simple data pre-processing steps and also allows the user to
supply hers/his own functions to be applied to the data. The result of the function is a list containing
the new (pre-processed) versions of the given train and test sets.

Usage

standardPRE(form, train, test, steps, ...)

Arguments

form A formula specifying the predictive task.

train A data frame containing the training set.

test A data frame containing the test set.

steps A vector with function names that are to be applied in the sequence they appear
in this vector to both the training and testing sets, to obtain new versions of these
two data samples.

... Any further parameters that will be passed to all functions specified in steps
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Details

This function is mainly used by both standardWF and timeseriesWF as a means to allow for users
of these two standard workflows to specify some data pre-processing steps. These are steps one
wishes to apply to the different train and test samples involved in an experimental comparison,
before any model is learned or any predictions are obtained.

Nevertheless, the function can also be used outside of these standard workflows for obtaining pre-
processed versions of train and test samples.

The function accepts as pre-processing functions both some already implemented functions as well
as any function defined by the user provided these follow some protocol. Namely, these user-
defined pre-processing functions should be aware that they will be called with a formula, a training
data frame and a testing data frame in the first three arguments. Moreover, any arguments used
in the call to standardPRE will also be forwarded to these user-defined functions. Finally, these
functions should return a list with two components: "train" and "test", containing the pre-processed
versions of the supplied train and test data frames.

The function already contains implementations of the following pre-processing steps that can be
used in the steps parameter:

"scale" - that scales (subtracts the mean and divides by the standard deviation) any knnumeric fea-
tures on both the training and testing sets. Note that the mean and standard deviation are calculated
using only the training sample.

"centralImp" - that fills in any NA values in both sets using the median value for numeric predictors
and the mode for nominal predictors. Once again these centrality statistics are calculated using only
the training set although they are applied to both train and test sets.

"knnImp" - that fills in any NA values in both sets using the median value for numeric predictors and
the mode for nominal predictors, but using only the k-nearest neighbors to calculate these satistics.

"na.omit" - that uses the R function na.omit to remove any rows containing NA’s from both the
training and test sets.

"undersampl" - this undersamples the training data cases that do not belong to the minority class
(this pre-processing step is only available for classification tasks!). It takes the parameter perc.under
that controls the level of undersampling (defaulting to 1, which means that there would be as many
cases from the minority as from the other(s) class(es)).

"smote" - this operation uses the SMOTE (Chawla et. al. 2002) resampling algorithm to generate
a new training sample with a more "balanced" distributions of the target class (this pre-processing
step is only available for classification tasks!). It takes the parameters perc.under, perc.over and
k to control the algorithm. Read the documentation of function smote to know more details.

Value

A list with components "train" and "test" with both containing a data frame.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>
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References

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote: Synthetic minority
over-sampling technique. Journal of Artificial Intelligence Research, 16:321-357.

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

standardPOST, standardWF, timeseriesWF

Examples

## Not run:

## A small example with standard pre-preprocessing: clean NAs and scale
data(algae,package="DMwR")

idx <- sample(1:nrow(algae),150)
tr <- algae[idx,1:12]
ts <- algae[-idx,1:12]
summary(tr)
summary(ts)

preData <- standardPRE(a1 ~ ., tr, ts, steps=c("centralImp","scale"))
summary(preData$train)
summary(preData$test)

######
## Using in the context of an experiment
library(e1071)
res <- performanceEstimation(

PredTask(a1 ~ .,algae[,1:12],"alga1"),
Workflow(learner="svm",pre=c("centralImp","scale")),
EstimationTask(metrics="mse")
)

summary(res)

######
## A user-defined pre-processing function
myScale <- function(f,tr,ts,avg,std,...) {

tgtVar <- deparse(f[[2]])
allPreds <- setdiff(colnames(tr),tgtVar)
numPreds <- allPreds[sapply(allPreds,

function(p) is.numeric(tr[[p]]))]
tr[,numPreds] <- scale(tr[,numPreds],center=avg,scale=std)
ts[,numPreds] <- scale(ts[,numPreds],center=avg,scale=std)
list(train=tr,test=ts)

}

## now using it with some random averages and stds for the 8 numeric

http://arxiv.org/abs/1412.0436
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## predictors (just for illustration)
newData <- standardPRE(a1 ~ .,tr,ts,steps="myScale",

avg=rnorm(8),std=rnorm(8))

## End(Not run)

standardWF A function implementing a standard workflow for prediction tasks

Description

This function implements a standard workflow for both classification and regression tasks. The
workflow consists of: (i) learning a predictive model based on the given training set, (ii) using it to
make predictions for the provided test set, and finally (iii) measuring some evaluation metrics of its
performance.

Usage

standardWF(form,train,test,
learner,learner.pars=NULL,
predictor='predict',predictor.pars=NULL,
pre=NULL,pre.pars=NULL,
post=NULL,post.pars=NULL,
.fullOutput=FALSE)

Arguments

form A formula specifying the predictive task.

train A data frame containing the data set to be used for obtaining the predictive model
(the training set).

test A data frame containing the data set to be used for testing the obtained model
(the test set).

learner A character string with the name of a function that is to be used to obtain the
prediction models.

learner.pars A list of parameter values to be passed to the learner (defaults to NULL).

predictor A character string with the name of a function that is to be used to obtain the
predictions for the test set using the obtained model (defaults to ’predict’).

predictor.pars A list of parameter values to be passed to the predictor (defaults to NULL).

pre A vector of function names that will be applied in sequence to the train and test
data frames, generating new versions, i.e. a sequence of data pre-processing
functions.

pre.pars A named list of parameter values to be passed to the pre-processing functions.
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post A vector of function names that will be applied in sequence to the predictions
of the model, generating a new version, i.e. a sequence of data post-processing
functions.

post.pars A named list of parameter values to be passed to the post-processing functions.

.fullOutput A boolean that if set to TRUE will make the function return more information in
the list that results from its execution like for instance the models (defaults to
FALSE).

Details

The main goal of this function is to facilitate the task of the users of the experimental comparison
infra-structure provided by function performanceEstimation. Namely, this function requires the
users to specify the workflows (solutions to predictive tasks) whose performance she/he wants to
estimate and compare. The user has the flexibility of writing hers/his own workflow functions,
however, in most situations that is not really necessary. The reason is that most of the times users
just want to compare standard out of the box learning algorithms on some tasks. In these contexts,
the workflow simply consists of applying some existing learning algorithm to the training data, and
then use it to obtain the predictions of the test set. This standard workflow may even include some
standard pre-processing tasks applied to the given data before the model is learned, and eventually
some post processing tasks applied to the predictions before they are returned to the user. The goal
of the current function is to facilitate evaluating this sort of estimation experiments. It implements
this workflow thus avoiding the need of the user to write these workflows.

Through parameter learner users may indicate the modeling algorithm to use to obtain the predic-
tive model. This can be any R function, provided it can be called with a formula on the first argument
and a training set on a parameter named data (as most R modeling functions do). As usual, these
functions may include other arguments that are specific to the modeling approach (i.e. are param-
eters of the model). The values to be used for these parameters are specified as a list through the
parameter learner.pars of function standardWF. The learning function can return any class of
object that represents the learned model. This object will be used to obtain the predictions in this
standard workflow.

Equivalently, the user may specify a function for obtaining the predictions for the test set using
the previously learned model. Again this can be any function, and it is indicated in parameter
predictor (defaulting to the usual predict function). This function should be prepared to accept in
the first argument the learned model and in the second the test set, and should return the predictions
of the model for this set of data. It may also have additional parameters whose values are specified
as a list in parameter predictor.pars.

Additionally, the user may specify a set of data-preprocessing functions to be applied to both the
training and testing sets, through parameter pre that accepts a vector of function names. These
functions will be applied to both the training and testing sets, in the sequence provided in the
vector of names, before the learning algorithm is applied to the training set. Once again the user is
free to indicate as pre-processing functions any function, eventually her/his own functions carrying
our any sort of pre-processing steps. These user-defined pre-processing functions will be applied
by function standardPRE. Check the help page of this function to know the protocol you need
to follow to be able to use your own pre-processing functions. Still, our infra-structure already
includes some common pre-processing functions so that you do not need to implement them. The
list of these functions is again described in the help page of standardPRE.
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The predictions obtained by the function specified in parameter predict may also go through some
post-processing steps before they are return as a result of the standardWF function. Again the
user may specify a vector of post-processing functions to be applied in sequence, through the pa-
rameter post. Parameters to be passed to these functions can be specified through the parameter
post.pars. The goal of these functions is to obtain a new version of the predictions of the models
after going through some post-processing steps. These functions will be applied to the predictions
by the function standardPOST. Once again this function already implements a few standard post-
processing steps but you are free to supply your own post-processing functions provided they follow
the protocol described in the help page of function standardPOST.

Finally, the parameter .fullOutput controls the ammount of information that is returned by the
standardWF function. By default it is FALSE which means that the workflow will only return (apart
from the predictions) the train, test and total times of the learning and prediction stages. This infor-
mation is returned as a component named "times" of the results list that can be obtained for instance
by using the getIterationsInfo if the workflow is being used in the context of an experimen-
tal comparison. If .fullOutput is set to TRUE the workflow will also include information on the
pre-processing steps (in a component named "preprocessing"), information on the model and pre-
dictions of the model (in a component named "modeling") and information on the post-processing
steps (in a component named "postprocessing").

Value

A list with several components containing the result of runing the workflow.

Note

In order to use any of the available learning algorithms in R you must have previously installed and
loaded the respective packages, if necessary.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

performanceEstimation, timeseriesWF, getIterationsInfo, getIterationsPreds, standardPRE,
standardPOST

Examples

## Not run:
data(iris)
library(e1071)

## a standard workflow using and SVM with default parameters
w.s <- Workflow(wfID="std.svm",learner="svm")

http://arxiv.org/abs/1412.0436
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w.s

irisExp <- performanceEstimation(
PredTask(Species ~ .,iris),
w.s,
EstimationTask("acc"))

getIterationsPreds(irisExp,1,1,it=4)
getIterationsInfo(irisExp,1,1,rep=1,fold=2)

## A more sophisticated standardWF
## - as pre-processing we imput NAs with either the median (numeric
## features) or the mode (nominal features); and we also scale
## (normalize) the numeric predictors
## - as learning algorithm we use and SVM with cost=10 and gamma=0.01
## - as post-processing we scale all predictions into the range [0..50]
w.s2 <- Workflow(pre=c("centralImp","scale"),

learner="svm",
learner.pars=list(cost=10,gamma=0.01),
post="cast2int",
post.pars=list(infLim=0,supLim=50),
.fullOutput=TRUE

)

data(algae,package="DMwR")

a1.res <- performanceEstimation(
PredTask(a1 ~ ., algae[,1:12],"alga1"),
w.s2,
EstimationTask("mse")
)

## Workflow variants of a standard workflow
ws <- workflowVariants(

pre=c("centralImp","scale"),
learner="svm",
learner.pars=list(cost=c(1,5,10),gamma=0.01),
post="cast2int",
post.pars=list(infLim=0,supLim=c(10,50,80)),
.fullOutput=TRUE,
as.is="pre"

)
a1.res <- performanceEstimation(

PredTask(a1 ~ ., algae[,1:12],"alga1"),
ws,
EstimationTask("mse")
)

## An example using GBM that is a bit different in terms of the
## prediction part as it requires to select the number of trees of the
## ensemble to use
data(Boston, package="MASS")
library(gbm)
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## A user written predict function to allow for using the standard
## workflows
gbm.predict <- function(model, test, method, ...) {

best <- gbm.perf(model, plot.it=FALSE, method=method)
return(predict(model, test, n.trees=best, ...))

}

resG <- performanceEstimation(
PredTask(medv ~.,Boston),
Workflow(learner="gbm",

learner.pars=list(n.trees=1000, cv.folds=10),
predictor="gbm.predict",
predictor.pars=list(method="cv")),

EstimationTask(metrics="mse",method=CV())
)

## End(Not run)

subset-methods Methods for Function subset in Package performanceEstimation

Description

The method subset when applied to objects of class ComparisonResults can be used to obtain
another object of the same class with a subset of the estimation results contained in the original
object.

Methods

signature(x = "ComparisonResults") The method has as first argument the object of class ComparisonResults
that you wish to subset. This method also includes 4 extra arguments that you can use to sup-
ply the subsetting criteria.
Namely, the parameter metrics allows you to indicate a vector with the subset of evaluation
metrics in the orginal object. Alternatively, you can provide a regular expression to be matched
against the name of the statistics measured in the experiment (see function metricNames) to
specify the subset of metrics you want to select.
The parameter workflows can be used to provide a vector with the subset of workflows (ap-
proaches to the predictive tasks) that are to be used in the sub-setting. Alternatively, you
can also provide a regular expression to be matched against the name of the workflows (see
function workflowNames) evaluated in the experiment to specify the subset you want to select.
The parameter tasks allows you to indicate a vector with the subset of predictive tasks to be
extracted. Alternatively, you can provide a regular expression to be matched against the name
of the tasks used in the experiment (see function taskNames) to specify the subset you want
to select.
Finally, the parameter partial allows you to control how the names of the other parameters
(tasks, workflows and metrics) are matched against the original names in the ComparisonResults
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object. It defaults to TRUE which means that the function grep is used, whilst with FALSE the
mathcin is done using the function match. For instance, if you have three metrics being esti-
mated with names "F", "F1" and "F2", and you call subset with metrics="F", this would in
effect subset all three metrics, whilst with partial=FALSE only the first of the three would be
considered.

taskNames The prediction tasks involved in an estimation experiment

Description

This function can be used to get a vector with the IDs of the prediction tasks that were used in a
performance estimation experiment.

Usage

taskNames(o)

Arguments

o An object of class ComparisonResults

Value

A vector of strings (the names of the tasks)

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

ComparisonResults, performanceEstimation, metricNames, workflowNames

Examples

## Not run:
## Estimating MSE for 3 variants of both
## regression trees and SVMs, on two data sets, using one repetition
## of 10-fold CV
library(e1071)
library(DMwR)
data(swiss)
data(mtcars)

http://arxiv.org/abs/1412.0436
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## running the estimation experiment
res <- performanceEstimation(

c(PredTask(Infant.Mortality ~ .,swiss),PredTask(mpg ~ ., mtcars)),
c(workflowVariants(learner="svm",

learner.pars=list(cost=c(1,10),gamma=c(0.01,0.5))),
workflowVariants(learner="rpartXse",

learner.pars=list(se=c(0,0.5,1)))
),
EstimationTask("mse")
)

## the names of the metrics that were estimated in the above experiment
taskNames(res)

## End(Not run)

timeseriesWF A function implementing sliding and growing window standard work-
flows for time series forecasting tasks

Description

This function implements sliding and growing window workflows for the prediction time series.
The sliding window workflow consists of: (i) starting by learning a prediction model based on the
given training set, (ii) use this model to obtain predictions for a pre-defined number of future time
steps of the test set; (iii) then slide the training window forward this pre-defined number of steps
and obtain a new model with this new training set; (iv) use this new model for obtaining another set
of predictions; and (v) keep repeting this sliding process until predictions are obtained for all test
set period.

The growing window workflow is similar but instead of sliding the training window, we grow this
window, so each new set of predictions is obtained with a model learned with all data since the
beginning of the training set till the current time step.

Usage

timeseriesWF(form,train,test,
learner,learner.pars=NULL,
type='slide',relearn.step=1,
predictor='predict',predictor.pars=NULL,
pre=NULL,pre.pars=NULL,
post=NULL,post.pars=NULL,
.fullOutput=FALSE,verbose=FALSE)

Arguments

form A formula specifying the predictive task.
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train A data frame containing the data set to be used for obtaining the first predic-
tion model. In case we are using the sliding window approach, the size of this
training set will determine the size of all future training sets after each slide step.

test A data frame containing the data set for which we want predictions.

learner A character string with the name of a function that is to be used to obtain the
prediction models.

learner.pars A list of parameter values to be passed to the learner (defaults to NULL).

type A character string specifying if we are using a sliding (value ’slide’) or a growing
(value ’grow’) window workflow (defaults to ’slide’).

relearn.step The number of time steps (translated into number of rows in the test set) af-
ter which a new model is re-learned (either by sliding or growing the training
window) (defaults to 1, i.e. each new row).

predictor A character string with the name of a function that is to be used to obtain the
predictions for the test set using the obtained model (defaults to ’predict’).

predictor.pars A list of parameter values to be passed to the predictor (defaults to NULL).

pre A vector of function names that will be applied in sequence to the train and test
data frames, generating new versions, i.e. a sequence of data pre-processing
functions.

pre.pars A named list of parameter values to be passed to the pre-processing functions.

post A vector of function names that will be applied in sequence to the predictions
of the model, generating a new version, i.e. a sequence of data post-processing
functions.

post.pars A named list of parameter values to be passed to the post-processing functions.

.fullOutput A boolean that if set to TRUE will make the function return more information in
the list that results from its execution like for instance the models (defaults to
FALSE).

verbose A Boolean indicating whether a "*" character should be printed every time the
window slides (defaults to FALSE).

Details

The main goal of this function is to facilitate the task of the users of the experimental compari-
son infra-structure provided by function performanceEstimation for time series problems where
the target variable can be numeric or nominal. Frequently, users just want to compare existing al-
gorithms or variants of these algorithms on a set of forecasting tasks, using some standard error
metrics. The goal of the timeseriesWF function is to facilitate this task by providing a standard
workflow for time series tasks.

The function works, and has almost the same parameters, as function standardWF. The help page
of this latter function describes most of the parameters used in the current function and thus we
will not repeat the description here. The main difference to the standardWF function is on the
existance of two extra parameters that control the sliding and growing window approaches to time
series forecasting. These are parameters type and relearn.step. We have considered two typical
workflow approaches for time series tasks where the user wants predictions for a certain future time
period. Both are based on the assumption that after "some" time the model that we have obtained
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with the given training period data may have become out-dated, and thus a new model should be
obtained with the most recent data. The idea is that as we move in the testing period and get
predictions for the successive rows of the test set, it is like if a clock is advancing. Previous rows
for which we already made a prediction are "past" as we assume that the successive rows in both
the train and test data frames are ordered by time (they are time series). In this context, as we
move forward in the test period we can regard the rows for which we already made a prediction as
past data, and thus potentially useful to be added to our initial training set with the goal of obtaining
a fresh new model with more recent data. This type of reasoning only makes sense if we suspect
that there is some kind of concept drift on our data. For stationary data this makes no sense and we
would be better off using the workflow provided by function standardWF. Still, the current function
implements two workflows following this model-updating reasoning: (i) sliding window; and (ii)
growing window. Both use the value of the parameter (relearn.step) to decide the number of time
periods after which we re-learn the model using fresh new data. The difference between the two
strategies lies on how they treat the oldest data (the initial rows of the provided training set). Sliding
window, as the name suggests, after each relearn step slides the training set forward thus forgetting
the oldest rows of the previous training set whilst incorporating the most recent observations. With
this approach all models are obtained with a training set with the same amount of data (the number
of rows of the initially given training set). Growing window does not remove older rows and thus
the training sets keep growing in size after each relearn step.

Value

A list with several components containing the result of runing the workflow.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

standardWF, performanceEstimation, getIterationsInfo, getIterationsPreds, standardPRE,
standardPOST

Examples

## The following is a small illustrative example using the quotes of the
## SP500 index. This example compares two random forests with 500
## regression trees, one applyed in a standard way, and the other using
## a sliding window with a relearn step of every 10 days. The experiment
## uses 10 repetitions of a train+test cycle using 50% of the available
## data for training and 25% for testing.
## Not run:
library(quantmod)
library(randomForest)
getSymbols('^GSPC',from='2008-01-01',to='2012-12-31')

http://arxiv.org/abs/1412.0436


84 topPerformer

data.model <- specifyModel(
Next(100*Delt(Ad(GSPC))) ~ Delt(Ad(GSPC),k=1:10)+Delt(Vo(GSPC),k=1:3))

data <- as.data.frame(modelData(data.model))
colnames(data)[1] <- 'PercVarClose'
spExp <- performanceEstimation(

PredTask(PercVarClose ~ .,data,'SP500_2012'),
c(Workflow(wf='standardWF',wfID="standRF",

learner='randomForest',
learner.pars=list(ntree=500)),

Workflow(wf='timeseriesWF',wfID="slideRF",
learner='randomForest',
learner.pars=list(ntree=500),
type="slide",
relearn.step=10)

),
EstimationTask(

metrics=c("mse","theil"),
method=MonteCarlo(nReps=5,szTrain=0.5,szTest=0.25)
)

)

## End(Not run)

topPerformer Obtain the workflow that best performed in terms of a metric on a task

Description

This function can be used to obtain the workflow (an object of class Workflow) that performed
better in terms of a given metric on a certain task.

Usage

topPerformer(compRes,metric,task,max=FALSE,stat="avg")

Arguments

compRes A ComparisonResults object with the results of your experimental comparison.

metric A string with the name of a metric estimated in the comparison

task A string with the name of a predictive task used in the comparison

max A boolean (defaulting to FALSE) indicating the meaning of best performance for
the selected metric. If this is FALSE it means that the goal is to minimize this
metric, otherwise it means that the metric is to be maximized.

stat The statistic to be used to obtain the ranks. The options are the statistics pro-
duced by the function summary applied to objects of class ComparisonResults,
i.e. "avg", "std", "med", "iqr", "min", "max" or "invalid" (defaults to "avg").
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Details

This is an utility function that can be used to obtain the workflow (an object of class Workflow) that
achieved the best performance on a given predictive task in terms of a certain evaluation metric.
The notion of best performance depends on the type of evaluation metric, thus the need for the max
argument. Some evaluation statistics are to be maximized (e.g. accuracy), while others are to be
minimized (e.g. mean squared error). For the former you should use max=TRUE, while the latter
require max=FALSE (the default).

Value

The function returns an object of class Workflow .

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

performanceEstimation, topPerformers, rankWorkflows, metricsSummary

Examples

## Not run:
## Estimating several evaluation metrics on different variants of a
## regression tree and of a SVM, on two data sets, using one repetition
## of 10-fold CV

data(swiss)
data(mtcars)
library(e1071)

## run the experimental comparison
results <- performanceEstimation(

c(PredTask(Infant.Mortality ~ ., swiss),
PredTask(mpg ~ ., mtcars)),

c(workflowVariants(learner='svm',
learner.pars=list(cost=c(1,5),gamma=c(0.1,0.01))
)

),
EstimationTask(metrics=c("mse","mae"),method=CV(nReps=2,nFolds=5))

)

## get the top performer workflow for a metric and task
topPerformer(results,"mse","swiss.Infant.Mortality")

## End(Not run)

http://arxiv.org/abs/1412.0436
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topPerformers Obtain the best scores from a performance estimation experiment

Description

This function can be used to obtain the names of the workflows that obtained the best scores (the
top performers) on an experimental comparison. This information will be shown for each of the
evaluation metrics involved in the comparison and also for all predictive tasks that were used.

Usage

topPerformers(compRes,
maxs=rep(FALSE,dim(compRes[[1]][[1]]@iterationsScores)[2]),
stat="avg",digs=3)

Arguments

compRes A ComparisonResults object with the results of your experimental comparison.

maxs A vector of booleans with as many elements are there are metrics estimated in
the experimental comparison. A TRUE value means the respective statistic is to
be maximized, while a FALSE means minimization. Defaults to all FALSE values,
i.e. all metrics are to be minimized.

stat The statistic to be used to obtain the ranks. The options are the statistics pro-
duced by the function summary applied to objects of class ComparisonResults,
i.e. "avg", "std", "med", "iqr", "min", "max" or "invalid" (defaults to "avg").

digs The number of digits (defaults to 3) used in the scores column of the results.

Details

This is an utility function to check which were the top performers in a comparative experiment
for each data set and each evaluation metric. The notion of best performance depends on the type
of evaluation metric, thus the need for the second argument. Some evaluation statistics are to be
maximized (e.g. accuracy), while others are to be minimized (e.g. mean squared error). If you have
a mix of these types on your experiment then you can use the maxs parameter to inform the function
of which are to be maximized and minimized.

Value

The function returns a list with named components. The components correspond to the predictive
tasks used in the experimental comparison. For each component you get a data.frame, where the
rows represent the statistics. For each statistic you get the name of the top performer (1st column
of the data frame) and the respective score on that statistic (2nd column).

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>
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References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

performanceEstimation, topPerformer, rankWorkflows, metricsSummary

Examples

## Not run:
## Estimating several evaluation metrics on different variants of a
## regression tree and of a SVM, on two data sets, using one repetition
## of 10-fold CV

data(swiss)
data(mtcars)
library(e1071)

## run the experimental comparison
results <- performanceEstimation(

c(PredTask(Infant.Mortality ~ ., swiss),
PredTask(mpg ~ ., mtcars)),

c(workflowVariants(learner='svm',
learner.pars=list(cost=c(1,5),gamma=c(0.1,0.01))
)

),
EstimationTask(metrics=c("mse","mae"),method=CV(nReps=2,nFolds=5))

)
## get the top performers for each task and evaluation metric
topPerformers(results)

## End(Not run)

Workflow-class Class "Workflow"

Description

Objects of the class Workflow represent a solution to a predictive task that typically involve learning
a prediction model using the given training data and then applying it to the provided test set. Still, a
workflow function may carry out many more steps (e.g. special data pre-processing steps, or some
form of post-processing of the predictions, etc.)

Objects from the Class

Objects can be created by calls of the form Workflow( ...). This constructor function can generate
3 types of workflows: i) standard workflows; ii) time series standard workflows; and iii) user-
defined workflows. The wf parameter of the constructor controls which type of workflow is created.

http://arxiv.org/abs/1412.0436
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If the value of this parameter is "standardWF" or absent and no parameter type is included, then
a workflow of type i) is created. If the value of wf is "timeseriesWF" or absent but the parameter
type is set to either "slide" or "grow" then a workflow of type ii) is created. In all other cases
a user-defined workflow is created which means that the function supplied in the parameter wf
must exist and follow the input/output protocol of user-defined workflows. This protocol implies
accepting a formula in the first argument, a training data frame in the second and a testing data
frame in the third, with any other arguments being workflow-specific parameters. Moreover, the
user-defined workflow must return a list object as result of its execution. See the Examples section
for illustrations. The constructor can also be given a workflow ID in parameter wfID. Finally, the
constructor also accepts a parameter deps with a valid value for the deps class slot.

Slots

name: An optional string containing an internal name of the workflow (a kind of ID)

func: A character string containing the name of the R function that implements the workflow.

pars: A named list containing the parameters and respective values to be used when calling the
workflow (defaulting to the empty list).

deps: An optional named list with components "packages" and "scripts" each containing a vector
of names of the required packages and scripts, respectively, for the workflow to be executable.

Methods

show signature(object = "Workflow"): method used to show the contents of a Workflow ob-
ject.

summary signature(object = "Workflow"): method used to obtain a summary of a Workflow
object.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

PredTask, EstimationTask, runWorkflow

Examples

showClass("Workflow")

## A simple standard workflow using a default svm
Workflow(learner="svm")

## Creating a standardWF
Workflow(learner="randomForest",learner.pars=list(ntree=420),wfID="rf420")

http://arxiv.org/abs/1412.0436


workflowNames 89

## Another one
Workflow(learner="svm",

pre=c("centralImp","scale"),
post="onlyPos",
deps=list(packages=c("e1071"),scripts=c()))

## Another one
Workflow(learner="rpart",.fullOutput=TRUE)

## A user-defined workflow
myWF <- function(form,train,test,wL=0.5,...) {

ml <- lm(form,train)
mr <- rpart(form,train)
pl <- predict(ml,test)
pr <- predict(mr,test)
ps <- wL*pl+(1-wL)*pr
list(trues=responseValues(form,test),preds=ps)

}

wu <- Workflow(wf="myWF",wL=0.6)

workflowNames The IDs of the workflows involved in an estimation experiment

Description

This function can be used to get a vector with the IDs of the workflows that were used in a perfor-
mance estimation experiment.

Usage

workflowNames(o)

Arguments

o An object of class ComparisonResults

Value

A vector of strings (the names of the workflows)

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

http://arxiv.org/abs/1412.0436
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See Also

ComparisonResults, performanceEstimation, taskNames, metricNames

Examples

## Not run:
## Estimating MSE for 3 variants of both
## regression trees and SVMs, on two data sets, using one repetition
## of 10-fold CV
library(e1071)
library(DMwR)
data(swiss)
data(mtcars)

## running the estimation experiment
res <- performanceEstimation(

c(PredTask(Infant.Mortality ~ .,swiss),PredTask(mpg ~ ., mtcars)),
c(workflowVariants(learner="svm",

learner.pars=list(cost=c(1,10),gamma=c(0.01,0.5))),
workflowVariants(learner="rpartXse",

learner.pars=list(se=c(0,0.5,1)))
),
EstimationTask("mse")
)

## the names of the metrics that were estimated in the above experiment
workflowNames(res)

## End(Not run)

workflowVariants Generate (parameter) variants of a workflow

Description

The main goal of this function is to facilitate the generation of different variants of a workflow. The
idea is to be able to supply several possible values for a set of parameters of the workflow, and then
have the function to return a set of Workflow objects, each consisting of one of the different possible
combinations of the variants. This function finds its use in the context of performance estimation
experiments, where we may actually be interested in comparing different parameter settings for a
workflow.

Usage

workflowVariants(wf,...,varsRootName,as.is=NULL)
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Arguments

wf This is the string representing the name of the function of the base workflow
from which variants should be generated. It can be ommited in the case of
standard workflows (see Details section).

... The function then accepts any number of named arguments, some of which may
have vectors of values. These named arguments are supposed to be the names of
parameters of the base workflow, and the parameters containing sets of values
are the alternatives for the respective parameter that you want to consider in the
variants generation (see examples below).

varsRootName By default the names given to each variant will be formed by concatenating the
base name of the workflow with the terminations: ".v1", ".v2", and so on. This
parameter allows you to supply a different base name.

as.is This is a vector of parameter names (defaults to NULL) that are not to be used as
source for workflow variants. This is useful for workflows that have parameters
that accept as "legal" values sets (e.g. a vector) and that we do not want the func-
tion workflowVariants to interprete as source values for generating different
workflow variants but instead being use as they are given.

Value

The result of this function is a list of Workflow objects. Each of these objects represents one of the
parameter variants of the workflow you have supplied.

Author(s)

Luis Torgo <ltorgo@dcc.fc.up.pt>

References

Torgo, L. (2014) An Infra-Structure for Performance Estimation and Experimental Comparison of
Predictive Models in R. arXiv:1412.0436 [cs.MS] http://arxiv.org/abs/1412.0436

See Also

Workflow,performanceEstimation

Examples

## Not run:
## Generating several variants of the "svm" learner using different
## values of the parameter "cost", under the "umbrella" of a standard
## workflow (i.e. it assumes wf="standardWF")
library(e1071)
workflowVariants(learner="svm",cost=c(1,2,5,10))

## variants of a user defined workflow (assumes that function "userWF"
## is defined and "understands" parameters par1 and par2)
workflowVariants(wf="userWF",par1=c(0.1,0.4),par2=c(-10,10))

http://arxiv.org/abs/1412.0436
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## Variants of a standard time series workflows (it assumes that it is a
## time series workflow because of the use of the "type" parameter,
## otherwise you could make it explicit by adding wf="timeseriesWF").
workflowVariants(learner="svm",type=c("slide","grow"),gamma=c(0.1,0.4))
## or equivalently
workflowVariants(wf="timeseriesWF",learner="svm",type=c("slide","grow"),gamma=c(0.1,0.4))

## allowing that one parameter is not considered for variants generation
workflowVariants(wf="userWF",par1=c(0.1,0.4),par2=c(-10,10),as.is="par1")

## nesting is also allowed!
workflowVariants(wf="userWF",

xpto=list(par1=c(0.1,0.4),d="k",par3=c(1,3)),
par2=c(-10,10),
as.is="par1")

## End(Not run)
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